Golub '99: Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring.

 Identification of cancer subtypes is important for
proper freatment
— Acute myeloid leukemia (AML) vs. acute lymphoblastic
leukemia (ALL)
* Classification used to be based primarily on
morphological appearance of the tumor.
— But tumors with similar histopathological appearance can

follow different clinical courses and different response to
therapy



Cancer Classification Challenges

* Gene discovery: identification of genes that differ
from one tumor class to another

* Class prediction: assigning fumors to known classes.
* Class discovery: identification of new cancer classes.



Classification of Acute Leukemias

* Classification of acute leukemia
— 1940s: Observation of subtle variability in clinical outcome
— Subtle differences in clinical outcomes
— 1960s: Some leukemias were periodic acid-Schiff positive (staining to detect glycogen,
glycoproteins, glycolipids) -> Eymphoid
— Others were myeloperoxidase positive > Myeloid (bone marrow)

— 1970s: Classification further validated by antibodies recognizing lymphoid and myeloid cell
surface receptors.

« 1990s: Further subclassification
— 1(12;21)(p13:922) chromosomal translocation occurs in 25% of patients with ALL
— 1(8:21)(q22:922) occurs in 15% of patients with AML
« Classification ALL vs. AML well established
— but no single test sufficient to establish diagnosis
— requires expert analysis from specialized lab tests
— Error prone



DNA microarrays as tool for cancer
classification

* Previous microarrays focused on cell culture rather
than primary patient samples
* Previous study by same researchers

— Normal kidney vs. renal cell carcinoma
— Morphological distinction is easier for that problem



Data collection

« 38 bone marrow samples
—27 ALL, 11 AML

+ Affymetrix chip containing probes for 6817 human
genes



Taskl: Gene discovery

* Are there genes with expression patterns
strongly correlated with class distinction?
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Taskl: Gene discovery

C-myb (U22376)

Proteasome iota (X59417)
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Myosin light chain (M31211)
RbApAR (X74262)
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E2A (M31523)

Inducible protein (L4773%)

Dynein light chain (U32944)
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Acyl-Coenzyme A dehydrogenase (M91432)
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(Ca2+ - ATPase (Z69881)

SRPY (U20998)
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Deoxyhypusine synthase (U26266)
Op 18 (M31303)

Rabaptin-5 (YO3612)
Heterochromatin profein p25 (L35451)
1L-7 receptor (M29696)

Adenosine deaminase (MI13792)

» 50 genes most
correlated with
class distinction

Fumarylacetopcetate (M55 150)
Zyxin (X9573%)

| LTCA synthase (USO136)
LYN (MI603R)

HoxAY (U§2759)

CD33 (M23197)

Adipsin (MBA526)
Leptin receptor (Y12670)
Cystatin C (M27891)
Proteoglycan 1 (X17042)
IL-8 precursor (YOO787)
Arurocidin (M96326)
po2 (U46751)

CyP3 (MB0254)

MCLI (LOS246)

ATPase (M62762)

1L-8 (M28130)
Cathepsin D (M63138)
Lectin (M57710)

MAD-3 (MOY043)
CD1le (M31695)

Ebp72 (X85116)
Lysozyme (M19045)
Properdin (M83652)
Catalase (XO04085)
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Task2: Class Prediction

« Use 50 most informative genes

— genes with highest correlation to class.

— Other number of genes gave similar results.
 Leave-one-out cross-validation

* For a new sample, each gene casts a "weighted
vote”

— Weight depends on expression level in new sample and
degree of correlation of that gene with class

distinction.
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Task2: Class Prediction
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Task3: Class Discovery
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