Logical Indexing

by AhmetSacan

Logical Vectors

>> vec = $\left[\begin{array}{lllll}1 & 5 & 8 & 9 & 2\end{array}\right]$];
>> isg = vec > 4
>> doubleres $=$ isg +5

\gg whos			
Name	Size	Bytes Class	
doubres	1×6	48	double array
isg	1×6	6	logical array
vec	1×6	48	double array

Logical Indexing

- A logical vector/matrix can be used to index (select) elements of a vector/matrix.
- The logical vector/matrix must have the same size as the vector/matrix being indexed.
>> vec $=\left[\begin{array}{llll}1 & 5 & 8 & 9\end{array} 27\right.$];
>> isg = vec > 4
>> vec (isg)
>> vec (isg) $=\operatorname{vec}($ isg $)+1$

Exercise

- $a=\left[\begin{array}{lllll}5 & 1 & 7 & 9 & 2\end{array}\right]$
- Create another vector b that contains the even elements of a.
- Change odd elements of a with 99.
- $a=[581792]$
- Change the odd elements of a, with +1 more than each.
- $a=[581792$ 2]
- Remove all elements of a that are divisible by 3.
- Repeat steps above for $a=[581 ; 792$ 2]

Logical Indexing of Matrices

- $m=$ randi $(100,3,5)$
- m([1 3], [2 4])
- m([5 8 10])
- $m([$ true false true], [false true false true false])
- m([true false true], [15])
- $m([$ false true false false true, true false true false false true false true false])

Beware of 0/1.

>> $a=\left[\begin{array}{llll}5 & 21796\end{array}\right] ;$
>> $\left(\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 1\end{array} 0\right]\right)$
??? Subscript indices must either be real positive integers or logicals.
>> $a\left(\right.$ logical $\left.\left(\left[\begin{array}{llllll}1 & 0 & 1 & 0 & 1 & 0\end{array}\right]\right)\right)$
>> a([true false true false true false])

find

- find (x) function returns the indices of non-zero elements of x.
>> find ([false true false true])
>> find ([$\left.\left.\begin{array}{llllll}3 & 0 & 2 & 5 & 0\end{array}\right]\right)$
>> vec $=\left[\begin{array}{lllll}1 & 5 & 8 & 9 & 2\end{array}\right]$];
>> find (vec >5)

Equivalence of logical indexing \& indexing

 with find()- find() can be used to convert a logical index to a numeric index
- Assuming I is a logical vector/matrix, the following expressions are equivalent:
-m(I)
- $m($ find(I) $)$

Exercise: Zero-crossing

- Find the indices of the elements of vector v, that are followed by a number with an opposite sign. Assume that v does not contain zero. Hints: sign, diff, find.

$$
v=\left[\begin{array}{lllllll}
5 & -1 & -2 & -1 & 3 & 8 & -2
\end{array}\right]
$$

Logical Operators:
Element-wise and, or, not

$$
\begin{aligned}
& \gg a=\left[\begin{array}{lllll}
3 & 0 & 5 & 1 &] ; \\
\gg b=\left[\begin{array}{lllll}
& 0 & 0 & -5 & 0
\end{array}\right] ; \\
\gg a \& b
\end{array}\right.
\end{aligned}
$$

>> a \| b

$$
\gg \sim a
$$

Table 5.1 Operator Precedence Rules

Operators

Precedence

```
parentheses ()
highest
transpose and power ', ^, .^
unary: negation (-), not (~)
multiplication, division *, /, \, .*, ./, .\
addition, subtraction +, -
colon operator :
relational <, <=, >, >=, ==, ~=
elementwise and &
elementwise or 
and &&
or ||
assignment =
lowest
```


Programming Concep \dagger

- When you want to operate on elements of a matrix that satisfy a condition, first construct an Index for elements that satisfy the condition.

Exercise

- Let A=magic(4)
- Replace with 0, all elements of A that are odd and whose $\log ()$ is greater than 2.

Exercise

- Given a three-column matrix A, store in B all rows of A where the sum of the first two numbers is less than the third number.
- e.g.,
$A=[$
$\begin{array}{lll}35 & 91 & 23\end{array}$
$\begin{array}{lll}35 & 7 & 77\end{array}$
$33 \quad 22 \quad 3$
$\begin{array}{lll}93 & 87 & 40\end{array}$
$29 \quad 67 \quad 21$
$\begin{array}{lll}61 & 79 & 67\end{array}$
$\begin{array}{lll}17 & 25 & 92\end{array}$
$85 \quad 56$ 1]
Your expression should produce:

```
B = [lllll}
    17 25 92]
```


Exercise

- Given a three-column matrix A, store in B all rows of A where the sum of the first two numbers is greater than or equal to the third number.
- e.g.,

$$
A=[
$$

$$
\begin{array}{lll}
35 & 91 & 23
\end{array}
$$

$$
35 \quad 7 \quad 77
$$

$33 \quad 22 \quad 3$
$\begin{array}{lll}93 & 87 & 40\end{array}$
$29 \quad 67 \quad 21$
$\begin{array}{lll}61 & 79 & 67\end{array}$
$\begin{array}{lll}17 & 25 & 92\end{array}$
$85 \quad 56$ 1]
Your expression should produce:
$B=[3591$ 23; 3322 3; 9387 40; 2967 21; 6179 67; 8556 1]

Logical Functions: all(), any()

>> vec1 = $\left.\begin{array}{llllll}1 & 3 & 1 & 1 & 2\end{array}\right] ;$
>> all (vec1)
>> any (vec1)
>> vec2 = [$\left.\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right]$
>> all (vec2)
>> any (vec2)

any(), all() with matrices

- If a matrix is given as input, these functions apply to each column.

$$
>A=[0032 ; 4005 ; 6058 \text { 8 }
$$

$\begin{array}{llll}0 & 0 & 3 & 2\end{array}$
40005
$6 \quad 0 \quad 5 \quad 8$
>> any (A)
1×4 logical array
1011

- If you want to apply to each column, provide the second "dimension" argument.
>> any (A, 2)
3×1 logical array
1
1
1
- $\operatorname{any}(A, 1)$ is same as $\operatorname{any}(A)$

meshgrid

- meshgrid creates a mesh (all combinations) of coordinates
>> $[x, y]=$ meshgrid([1 223$],[5,6])$

$$
x=
$$

123
123
$y=$
555
666

meshgrid example

- Find all integers x, y less than or equal to N (as example, use $\mathrm{N}=4$) where:

$$
\text { - } x^{2}+y=3 * x
$$

meshgrid example

- Make a 3D plot of the following function:

$$
f(x, y)=x * \sin (x+2 * y)
$$

- Use $x=0: .1: 5, y=0: .1: 5$
- Use plot3 and surf functions.

