Logical Indexing

by AhmetSacan

Logical Vectors

>> doubleres = isg +5

>> whos			
Name	Size	Bytes	Class
doubres	1x6	48	double array
isg	1x6	6	logical array
vec	1x6	48	double array

Logical Indexing

- A logical vector/matrix can be used to index (select) elements of a vector/matrix.
 - The logical vector/matrix must have the same size as the vector/matrix being indexed.

» vec (isg)

- a=[5 8 1 7 9 2]
- Create another vector b that contains the <u>even</u> <u>elements of a</u>.
- Change odd elements of a with 99.
- a=[5 8 1 7 9 2]
- Change the odd elements of a, with +1 more than each.
- a=[5 8 1 7 9 2]
- Remove all elements of a that are divisible by 3.
- Repeat steps above for a=[5 8 1; 7 9 2]

Logical Indexing of Matrices

- m=randi(100,3,5)
- m([1 3], [2 4])
- m([5 8 10])
- m([true false true], [false true false true false])
- m([true false true], [1 5])
- m([false true false false true , true false true false false false false])

Beware of 0/1.

```
>> a = [ 5 2 1 7 9 6 ];
>> a ( [1 0 1 0 1 0] )
??? Subscript indices must either be real positive
integers or logicals.
```

```
>> a( logical( [1 0 1 0 1 0] ) )
```

>> a([true false true false true false])

find

- find(x) function returns the indices of non-zero elements of x.
- >> find ([false true false true])

```
>> find ([30250])
```

```
>> vec = [ 1 5 8 9 2 7 ];
>> find ( vec > 5 )
```

Equivalence of logical indexing & indexing with find()

- find() can be used to convert a logical index to a numeric index
- Assuming I is a logical vector/matrix, the following expressions are equivalent:
 - m(I)
 - m (find(I))

Exercise: Zero-crossing

 Find the indices of the elements of vector v, that are followed by a number with an opposite sign. Assume that v does not contain zero. Hints: sign, diff, find.

v = [5 -1 -2 -1 3 8 -2]

Logical Operators: Element-wise and, or, not

- >> a = [3 0 5 1];
- >> b = [0 0 -5 0];
- >> a & b

>> a | b

>> ~a

Table 5.1 Operator Precedence Rules			
Operators	Precedence		
parentheses () transpose and power ', ^, .^ unary: negation (–), not (~) multiplication, division *, /, .*, ./, .\ addition, subtraction +, – colon operator : relational $<$, $<=$, $>$, $>=$, $==$, $\sim=$ elementwise and &	highest		
elementwise or and && or assignment = lowest			

Г

Programming Concept

• When you want to operate on elements of a matrix that satisfy a condition, first construct an Index for elements that satisfy the condition.

- Let A=magic(4)
- <u>Replace with 0</u>, all elements of <u>A that are odd</u> and whose <u>log() is greater than 2</u>.

• Given a three-column matrix A, store in B all rows of A where the sum of the first two numbers is less than the third number.

```
• e.g.,
A = [
  35
     91 23
  35 7
        77
  33 22 3
     87 40
 93
  29
     67 21
  61 79 67
  17 25 92
 85
     56
         1]
```

Your expression should produce: B = [35 7 77 17 25 92]

- Given a three-column matrix A, store in B all rows of A where the sum of the first two numbers is greater than or equal to the third number.
- e.g., $A = \begin{bmatrix} \\ 35 & 91 & 23 \\ 35 & 7 & 77 \\ 33 & 22 & 3 \\ 93 & 87 & 40 \\ 29 & 67 & 21 \\ 61 & 79 & 67 \\ 17 & 25 & 92 \\ 85 & 56 & 1 \end{bmatrix}$

Your expression should produce: B = [35 91 23; 33 22 3; 93 87 40; 29 67 21; 61 79 67; 85 56 1]

Logical Functions: all(), any()

- >> vec1 = [1 3 1 1 2];
 >> all (vec1)
 >> any (vec1)
- >> vec2 = [1 1 0 1]
 >> all (vec2)
 >> any (vec2)

any(), all() with matrices

- If a matrix is given as input, these functions apply to each column.
 - $\Rightarrow A=[0032;4005;6058]$
 - 0 0 3 2 4 0 0 5 6 0 5 8 >> any(A) 1×4 logical array
 - 1 0 1 1
- If you want to apply to each column, provide the second "dimension" argument.
- >> any(A, 2)
 3×1 logical array
 1
 1
 1
 .
 any(A,1) is same as any(A)

meshgrid

- meshgrid creates a mesh (all combinations) of coordinates
 >> [x, y] = meshgrid([1 2 3], [5,6])
 x =
- 1 2 3
- 1 2 3
- y = 5 5 5 6 6 6

meshgrid example

- Find all integers x, y less than or equal to N (as example, use N=4) where:
 - $x^2 + y = 3 * x$

meshgrid example

- Make a 3D plot of the following function: f(x, y) = x * sin(x + 2 * y)
- Use x=0:.1:5, y=0:.1:5
- Use plot3 and surf functions.