Vectorized Code

Operations on Vectors and Matrices

- "Vectorized code": using a function that can apply itself to each element of a vector or matrix.
- Most Matlab operators and functions can operate on vectors and matrices.
- E.g.: $m=m * 3$;
- Works if m is a scalar
- Also works if m is a vector or matrix; each element of m is multiplied by 3 .

Matlab functions support vectors/matrices

- $v=-3: 4$
$v=$

$$
\begin{array}{llllllll}
-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4
\end{array}
$$

- abs(v)
- $m=r o u n d(r a n d(3,4) * 10)$
- $\sin (m)$

Matrix vs. Arithmetic operations

- Multiplication, division, and power operators have special conventions when applied to matrices. They will typically do matrix operations rather than arithmetic operations.
- Matrix operations are topics of Linear Algebra. In this class, we work with arithmetic operations; so you need to make sure matrix operations are not used.

Matrix vs. Arithmetic operations

- When using an operator, Matlab gets to decide whether it will apply matrix vs. arithmetic operation, based on the size of the operands.
- Let $A=[12 ; 34], B=[1020 ; 3040]$

First Arg	Operator	Second Arg	Operation	Example
Scalar	$*^{\wedge} /^{\wedge}$	Scalar	Arithmetic	$5 / 3,1 / 2,5^{\wedge} 2$
Matrix	$* /$	Scalar	Arithmetic	$A^{*} 2, A / 2$
Scalar	$*$	Matrix	Arithmetic	2^{*} A
Scalar	$/^{\wedge}$	Matrix	Matrix	2/A
Matrix	\wedge	Scalar	Matrix	A^2 $^{\wedge}$
Matrix	$* /$	Matrix	Matrix	A*B, A/B

Element-wise operators

- You can force arithmetic operations on matrices by using "element-wise" operators.
- Place a period before the operator to make it elementwise.
- Whereas the meaning of $X * Y$ depend on the size of X and Y, X.* Y is always arithmetic.
- To be safe, you may choose to always use element-wise operators.

Matrix vs. Element-wise operations

$$
\begin{array}{cccc}
\gg A=\left[\begin{array}{lll}
1 & 2 ; & 4
\end{array}\right] \\
1 & 2 & \\
4 & 5 &
\end{array}
$$

$$
\begin{array}{cc}
\gg B= & {\left[\begin{array}{lll}
10 & 20 ; & 30
\end{array}\right]} \\
10 & 20 \\
30 & 40
\end{array}
$$

- Matrix multiplication

```
>> A * B
    70 100
190 280
```

- Element-wise multiplication

```
>> A .* B
        10 40
        120 200
```


Matrix vs. Element-wise operations

```
>> A=[1 2; 4 5]
    1 2
    4 5
```

- Matrix division
>> 1 / A
Error using
Matrix dimensions must agree.
- Element-wise division

$\gg 1 . / \mathrm{A}$	
1.0000	0.5000
0.2500	0.2000

- Matrix power

$9 \quad 12$
2433
- Element-wise power

$$
\begin{array}{rrr}
\gg A .^{\wedge} & 2 r \\
1 & \\
16 & 25
\end{array}
$$

Exercise: Vectorized Code

- Let n be a positive integer.
- Calculate the sum:

$$
\begin{aligned}
& \frac{1}{1^{1}}+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\cdots \frac{1}{n^{n}} \\
& \operatorname{sum}\left(\left[\begin{array}{llll}
\frac{1}{1^{1}} & \frac{1}{2^{2}} & \frac{1}{3^{3}} & \cdots
\end{array} \frac{1}{n^{n}}\right]\right) \\
& 1 \text {./ }\left[\begin{array}{lllll}
1^{1} & 2^{2} & 3^{3} & \ldots & n^{n}
\end{array}\right] \\
& {\left[\begin{array}{lllll}
1 & 2 & 3 & \ldots & n
\end{array}\right] \quad .^{\wedge} \quad\left[\begin{array}{llll}
1 & 2 & 3 & \ldots
\end{array}\right]} \\
& \text { 1:n } \\
& \text {. } \quad 1: n \\
& \text { ?? }
\end{aligned}
$$

Exercise

- Let n be an even positive integer.
- Calculate the sum:

$$
1-2^{3}+3^{4}-4^{5}+5^{6} \ldots-n^{n+1}
$$

