Vectorized Code

Operations on Vectors and Matrices

- "Vectorized code": using a function that can apply itself to each element of a vector or matrix.
- Most Matlab operators and functions can operate on vectors and matrices.
- E.g.: m = m *3;
 - Works if m is a scalar
 - Also works if m is a vector or matrix; each element of m is multiplied by 3.

Matlab functions support vectors/matrices

- v=-3:4
- v =

- abs(v)
- m=round(rand(3,4)*10)
- sin(m)

Matrix vs. Arithmetic operations

- Multiplication, division, and power operators have special conventions when applied to matrices. They will typically do matrix operations rather than arithmetic operations.
- Matrix operations are topics of Linear Algebra. In this class, we work with arithmetic operations; so you need to make sure matrix operations are <u>not used</u>.

Matrix vs. Arithmetic operations

- When using an operator, Matlab gets to decide whether it will apply matrix vs. arithmetic operation, based on the size of the operands.
- Let A=[1 2; 3 4], B=[10 20; 30 40]

First Arg	Operator	Second Arg	Operation	Example
Scalar	* / ^	Scalar	Arithmetic	5/3, 1/2, 5^2
Matrix	* /	Scalar	Arithmetic	A*2, A/2
Scalar	*	Matrix	Arithmetic	2*A
Scalar	/ ^	Matrix	Matrix	2/A
Matrix	٨	Scalar	Matrix	A^2
Matrix	* /	Matrix	Matrix	A*B, A/B

Element-wise operators

- You can force arithmetic operations on matrices by using "element-wise" operators.
- Place a period before the operator to make it elementwise.
- Whereas the meaning of X*Y depend on the size of X and Y, X.*Y is always arithmetic.
- To be safe, you may choose to always use element-wise operators.

Matrix vs. Element-wise operations

>> A=[1 2;	4 5]	>> B =	[10 20;	30	40]
1	2	10	20		
4	5	30	40		

- Matrix multiplication
 - >> A * B 70 100 190 280
- Element-wise multiplication
 >> A .* B
 - 1040120200

Matrix vs. Element-wise operations

- >> A=[1 2; 4 5] 1 2 4 5
- Matrix division
 > 1 / A
 Error using /
 Matrix dimensions
 must agree.
- Element-wise division
 >> 1 ./A
 1.0000 0.5000
 0.2500 0.2000

- Matrix power
 >> A ^ 2
 9 12
 24 33
- Element-wise power
 >> A .^ 2
 1 4
 16 25

Exercise: Vectorized Code

- Let n be a positive integer.
- Calculate the sum:

$$\frac{1}{1^{1}} + \frac{1}{2^{2}} + \frac{1}{3^{3}} + \dots + \frac{1}{n^{n}}$$
$$sum\left(\left[\frac{1}{1^{1}} + \frac{1}{2^{2}} + \frac{1}{3^{3}} + \dots + \frac{1}{n^{n}}\right]\right)$$

1 ./ $[1^1 \ 2^2 \ 3^3 \ \dots \ n^n]$

[1 2 3 ... n] .^ [1 2 3 ... n]

1:n .^ 1:n ??

Exercise

- Let n be an even positive integer.
- Calculate the sum:

$$1 - 2^3 + 3^4 - 4^5 + 5^6 \dots - n^{n+1}$$