тт	TD		
CO*	·_ `	۱.	
USU	-11	۰.	
			_

BIOMED 201 - Programming & Modeling for BME

Midterm Exam, 2012.05.08, Instructor: Ahmet Sacan

Sign the honor code below. No credit will be given for the exam without a signed pledge.

I have neither given nor received aid on this examination. Signed:_____

There are 9 questions in this exam. <u>Turn in Questions 1-7 before you start working on Questions</u> <u>8-9</u>. Submit your programs for Questions 8-9 on ProgrammingBank, in addition to turning in your paper exam. Sign off your submission before exiting the room.

Q1 (5 pts). *Indexing*. Let **A** be a square matrix with at least 3 rows. Write a single statement that will assign into B, the 6 elements located in the first two rows and last 3 columns of **A**. After your statement executes, **B** should become a 2x3 matrix. Do not use loops.

B =

Q2 (5 pts). *Linear Indexing*. If matrix M has 5 rows and 8 columns, M(4,3) can equivalently be expressed as M(x). What is the value of x?

Q3 (5 pts). *Creating vectors.* Use colon operator ":" to create a vector **X** that has values [15 10 5 0 -5 -10]. Create another vector **Y** that has the same values, using the linspace function.

Q4 (5 pts). Logical Indexing. Let X, Y, and Z be numerical column vectors, each with N elements and let X_i denote the ith element of X. First construct a logical vector I that also has N elements and where I_i is true when $X_i * Y_i = Z_i$ and $X_i \le Y_i$; and false otherwise. Next, construct a matrix M that has 3 columns and contains in each column only those elements of X, Y, Z for which I_i is true.

Q5 (10 pts). Variable scope. The function apple is as given below. Fill in the blanks in the output.

Q6 (10 pts). Nested for loops. Fill in the blanks in the output below.

```
>> x = zeros(2,0);
>> for a = [ 1 2 3 ]
>> for b = [ 4 5 ]
>> x(:,end+1) = [ a b ];
>> end
>> end
>> disp ( x )
```

Q7 (5 pts). Operator precedence. Fill in the blanks in the output below.

```
>> x=0;
>> disp(-3 <= x <= 3 )
```

>> disp('e'=='d' + 1)

User-ID:	
0.301-112.	

Q8 (5 pts). *Binary and hexadecimal numbers.* In the first box below, write down the binary representation of the decimal number **35**. In the second box, write down the decimal value of the number given in hexadecimal notation.

35 =	0xF3 =
------	--------

I have neither given nor received aid on this examination.
Time of submission:
Signed:

Q8 (25 pts). Selection statements, loops or vectorized code. A magic square is defined as a square matrix with n rows, containing numbers from 1 to n^2 , and whose rows and columns sum up to the same number. Write a function **ismagic(M)** that takes a matrix **M** as input and returns true only if **M** is a magic square. Hints: sum, unique.

```
>> ismagic( [8 1 6; 3 5 7; 4 9 2] )
ans =
    1
>> ismagic( [2 2; 2 2] )
ans =
    0
>> ismagic( [8 1 6; 3 5 7] )
ans =
    0
```

Q9 (25 pts). *Loops* or *vectorized code*. Write a function **eulernumber(n)** that takes a positive number **n** and calculates an approximation to mathematical constant e, the base of the natural logarithm, using the following formula. Hints: sum, factorial.

$$e \approx 1 + \frac{1}{1} + \frac{1}{1 \times 2} + \frac{1}{1 \times 2 \times 3} + \frac{1}{1 \times 2 \times 3 \times 4} + \dots + \frac{1}{1 \times 2 \times \dots \times n}$$

```
>> disp( eulernumber(2) )
        2.5000
>> disp( eulernumber(4) )
        2.7083
```