
Vectors & Matrices

• Vectors & Matrices store sets of values, all of which
have the same type.

• row vector

• column vector

• scalar

• matrix

• elements

Creating row vectors

• v = [1,2,3,4]
• v = [1 2, 3 4]
• Colon operator (iterator): create equally spaced numbers

• from : step : to
• v = 2:1:6
• v = 2:6
• v = 1:2:9
• 1:2:6
• 6:3
• 9:-2:1

• linspace(from , to, n)
– linspace(2,6,5)
– linspace(6,18,5)
– linspace(18,6,5)

Concatenating vectors

• a = [1 2]

• b = [3 4 5]

• b = [[3 4] 5]

• c = [a b]

• c = [a b 1 2 3]

Indexing (Accessing) vectors

• variable (index)
• v=10:15
• v(3) "v sub 3"
• index itself can be a vector

– v([1 2 3])
• the indexed entries can be modified:

– v(2)=30
• Matlab automatically extends vector if indexed element does not

exist.
– v(10)=99
– Avoid automatic extension when you care about speed.

Exercise

• What is the value of a after the following statements
are executed?
– a=2:2:8

– a(4)=50

– a(6)=11

– a=a(3:6)

– a=[a linspace(4,12,3)]

Creating column vectors

• c = [1; 2; 3; 4]

• Row vectors can be transposed using '

• r = 1:3

• c = r'

• Exercise: Does the following result in a row or column
vector ?
– 1:3'

Creating matrix variables

• m=[4 , 3 1; 2, 5 6]

• m=[4 3 1

2 5 6]

• There must always be the same number of elements in
each row.

• m=[2:4; 3:6]

Linear Indexing

• Matlab stores and indexes matrices column-by-column.
• We can index a matrix as if it is a vector.
• m=[

4 3 1
6 5 7]

• m(1)
• m(2)
• m(end-1:end)

(Row,Column) Indexing Matrices

• m=[
2 3 4
5 6 7]

• m(2,3)
• m(1:2,2:3)
• m([2 2], [3 1 3])
• m(1,:)
• m(:,2)
• m(1,2:end)

• What about m([2, 3]) ?

Modifying matrix elements

• m=[
2 3 4
5 6 7]

• m(1,1)=9
• m(1,1:2)=13
• m(1,[2 1])=[8 11]
• m(1,:)=9
• m(1,:)=[9 9]
• m(5,:)=1:3

Generator Functions
• rand
• rand(R)
• rand(R, C)
• Others: zeros(), ones(), inf(), nan(),

true(), false(), randi()

• randi(Max, R, C)

• magic(R)

Matrix Dimensions

• size
• numel
• length
• m=rand(2,3)
• size(m)
• [R, C] = size(m)
• numel(m)
• Exercise:

– Write function that takes a matrix m as input, and returns a
matrix of zeros with the same size as m.

Changing Dimensions

• reshape
– m=randi(100,3,4)
– reshape(m,2,6)
– reshape(m,4,3)
– reshape(m,4,[])

• fliplr(m)
• flipud(m)
• rot90(m) rotates counterclockwise

– rot90(m,-1)
– rot90(m,2)

Replicating matrix

• repmat(m, r, c)

• m=[1 2; 3 4];

• repmat(m,1,3)

• repmat(m,2,2)

• repmat(m,2,3)

Exercise

• 1.32: Find an "efficient" way to generate the following
matrix:
m =

7 8 9 10

12 10 8 6

• Increment the first row of the above matrix m with +1,
and the second row of m with +2, in a single statement.
– If matrix m had more than two rows, your code should add +3 to

the third row, +4 to the fourth row, etc.

Empty vectors

• e=[]
– size(e)
– numel(e)

• Empty vectors can be used to delete elements from
vectors/matrices
– m=randi(10,3,4)
– m(:,4) =[]
– m(1,:) =[]
– m(2:4) =[]

Three dimensional matrices

• m=zeros(3,4,2)

• m(:,:,1)=randi(100,3,4)

• m(:,:,2)=randi(100,3,4)

Basic statistics functions

• sum(v), sum(A), sum(A,dim)
• mean(v), mean(A), mean(A,dim)
• std(v), std(A), std(A,0,dim)

• diff(v), diff(A), diff(A,[],dim), diff(A,k)
• min(v), min(A), min(A, [], dim), min(A,b), min(A,B)
• max(v), max(A), max(A, [], dim), max(A,b), max(A,B)

• [x,pos] = min(v)
• [x,pos] = max(v)

Plotting

• plot(X,Y)
• plot(X,Y,'r*’)
• scatter(X,Y)

• axis([xlow, xhigh, ylow, yhigh])
• xlabel('time (sec)')
• ylabel('temperature (Fahrenheit)')
• title('Temperature vs. time’)
• legend
• grid on
• subplot(R,C, i)
• hold on/off
• clf
• Saving plots as image files (File -> SaveAs).

Exercise

• Draw four random triangles using the plot() function.
Use a different color, marker, and line type for each
triangle.

Bar-plot

• bar(Y)

• bar(X, Y)

• errorbar(X,Y, E)

• [...] creates vectors and matrices
– comma or space adds entries on the same row
– semicolon or linebreak introduces new row

• Linear Indexing: v(ind)
– ind can be a scalar to access an individual element
– ind can be a vector to access multiple elements
– If v is a matrix, we pretend it is a vector by considering column-by-column ordering

of its elements
– "end" keyword within ind replaced with number of elements of v.

• Row-Column Indexing: m(r,c)
– r/c can be scalars, to access an individual element
– r/c can be vectors, to access multiple elements
– The result will have the same number of rows as r, and the same number of columns

as c.
– Values in r determine which rows of m are used to fill in each result row. Values in c

determine which columns of m are used to fill in each result column.
– end keyword within r replaced with number of rows of m.
– end keyword within c replaced with number of columns of m.

Summary

• v(ind) = x; m(r,c) = x; When indexing is used as
target of an assignment:
– If multiple elements are indexed and there is a scalar x: x

is copied into each indexed position.

– If multiple elements are indexed and x is not a scalar: there
needs to be the same number of elements in x and the
number of positions being indexed.

• v(ind) = [] and m(r,c) = [] are used to remove the
indexed entries from vector/matrix.
– When a matrix is linearly indexed, the removal of elements

would force it to become a vector.

Summary

• rand, zeros, ones, inf, nan, true, false, randi
– Create a scalar, when no dimension arguments are given: rand()
– Create a square matrix, when a single dimension argument is given:

rand(5)
– Create a matrix with any number of rows and columns, when two

dimension arguments are given: rand(3,4)
– randi has a reserved first input that must be provided before any

dimension arguments are given.

• sum, mean, std, min, max, diff
– When a vector input given (regardless of row vector or column

vector), operate on the vector.
– When a matrix is given, operate on each column separately.
– If need to perform on each row, supply a dimension argument 2.
– Some of these functions have a reserved second input argument,

which must be specified before any dimension arguments are given.

Summary

• reshape() creates a matrix with different number of
rows and columns, while preserving the linear order of
elements

• repmat(x, r, c) uses x as a "brick" to build a wall that
is r high and c wide.

Summary

