Vectors \& Matrices

- Vectors \& Matrices store sets of values, all of which have the same type.
- row vector
- column vector
- scalar
- matrix
- elements

Creating row vectors

- $v=[1,2,3,4]$
- $v=\left[\begin{array}{lll}1 & 2,3 & 4\end{array}\right]$
- Colon operator (iterator): create equally spaced numbers
- from : step : to
- $v=2: 1: 6$
- $v=2: 6$
- $v=1: 2: 9$
- 1:2:6
- 6:3
- 9:-2:1
- linspace(from,to, n)
- linspace $(2,6,5)$
- linspace($6,18,5$)
- linspace($18,6,5$)

Concatenating vectors

- $a=[12]$
-b = [345]
-b $b=\left[\begin{array}{ll}3 & 4\end{array}\right]$]
- $c=[a b]$
- $c=\left[\begin{array}{llll}a & b & 1 & 2\end{array}\right]$

Indexing (Accessing) vectors

- variable (index)
- v=10:15
- v(3) "v sub 3"

- index itself can be a vector
- v([lllll)
- the indexed entries can be modified:
$-\mathrm{v}(2)=30$
- Matlab automatically extends vector if indexed element does not exist.
- v(10)=99
- Avoid automatic extension when you care about speed.

Exercise

- What is the value of a after the following statements are executed?
$-a=2: 2: 8$
$-a(4)=50$
$-a(6)=11$
$-a=a(3: 6)$
$-a=[$ a linspace $(4,12,3)]$

Creating column vectors

- $c=[1 ; 2 ; 3 ; 4]$
- Row vectors can be transposed using '
- $r=1: 3$
- $c=r^{\prime}$
- Exercise: Does the following result in a row or column vector?
-1:3'

Creating matrix variables

- $m=[4, \quad 31 ; 2,56]$
- $m=\left[\begin{array}{lll}4 & 3 & 1\end{array}\right.$

$$
256]
$$

- There must always be the same number of elements in each row.
- $m=[2: 4 ; 3: 6]$

Linear Indexing

- Matlab stores and indexes matrices column-by-column.
- We can index a matrix as if it is a vector.
- $m=[$

431
657]

- m(1)

- m(2)
- m(end-1:end)
(Row,Column) Indexing Matrices
- $m=[$ 234 567]
- $m(2,3)$
- $m(1: 2,2: 3)$
- m([2 2], [3 13 3])
- m(1,:)
- m(:,2)
- $m(1,2$ end $)$
- What about $m([2,3])$?

Modifying matrix elements

- $m=[$

234
567]

- $m(1,1)=9$
- $m(1,1: 2)=13$
- $m(1,[21])=[811]$
- $m(1,:)=9$
- $m(1,:)=[99]$
- $m(5,:)=1: 3$

Generator Functions

- rand
- $\operatorname{rand}(R)$
- $\operatorname{rand}(R, C)$
- Others: zeros(), ones(), inf(), nan(), true(), false(), randi()
- randi(Max, R, C)
- magic(R)

Matrix Dimensions

- size
- numel
- tength
- $m=\operatorname{rand}(2,3)$
- size(m)
- $[R, C]=\operatorname{size}(m)$
- numel(m)
- Exercise:
- Write function that takes a matrix m as input, and returns a matrix of zeros with the same size as m.

Changing Dimensions

- reshape
- $m=$ randi $(100,3,4)$
- reshape(m,2,6)
- reshape ($m, 4,3$)
- reshape(m,4,[])
- fliplr(m)
- flipud(m)
- rot90(m) rotates counterclockwise
- rot90(m,-1)
$-\operatorname{rot} 90(m, 2)$

Replicating matrix

- repmat (m, r, c)
- $m=[12 ; 34]$;
- repmat(m,1,3)
- repmat(m,2,2)
- repmat(m,2,3)

Exercise

- 1.32: Find an "efficient" way to generate the following matrix:

$m=$			
7	8	9	10
12	10	8	6

- Increment the first row of the above matrix m with +1 , and the second row of m with +2 , in a single statement.
- If matrix m had more than two rows, your code should add +3 to the third row, +4 to the fourth row, etc.

Empty vectors

- $e=[]$
- size(e)
- numel(e)
- Empty vectors can be used to delete elements from vectors/matrices
- $m=$ randi $(10,3,4)$
$-m(: 4)=[]$
$-m(1,:)=[]$
$-m(2: 4)=[]$

Three dimensional matrices

- $m=z e r o s(3,4,2)$
- $m(:,: 1)=$ randi $(100,3,4)$
- $m(:, i, 2)=r a n d i(100,3,4)$
$\mathrm{m}=$ randi $(100,3,4$,
($: 1)=$

$$
\begin{aligned}
& m_{2} \rightarrow \underbrace{4} \\
& m_{3} \rightarrow m^{4} \\
& m_{1} \rightarrow m^{4} \\
& m
\end{aligned}
$$

$$
\begin{aligned}
& \text { m(}(:, 2)=
\end{aligned}
$$

$$
\begin{aligned}
& m\left(\left[\begin{array}{lll}
2 & 3 & \square
\end{array}\right],\left[\begin{array}{ll}
3 & 4
\end{array}\right],\left[\begin{array}{lll}
2 & 1
\end{array}\right]\right) \xrightarrow{m_{2} \rightarrow} \xrightarrow{m_{3}} \rightarrow+\square
\end{aligned}
$$

Basic statistics functions

- $\operatorname{sum}(v), \operatorname{sum}(A), \operatorname{sum}(A, \operatorname{dim})$
- mean(v), mean(A), mean($A, d i m)$
- $\operatorname{std}(v), \quad \operatorname{std}(A), \quad \operatorname{std}(A, 0, \operatorname{dim})$
- $\operatorname{diff}(v), \operatorname{diff}(A), \operatorname{diff}(A,[], \operatorname{dim}), \operatorname{diff}(A, k)$
- $\min (v), \min (A), \min (A,[], \operatorname{dim}), \min (A, b), \min (A, B)$
- max(v), $\max (A), \max (A,[], \operatorname{dim}), \max (A, b), \max (A, B)$
- $[x, p o s]=\min (v)$
- $[x, p o s]=\max (v)$

	A	B	C	-	A	B	C
1	5	10		1	4	1	
2	3	9		2	7	11	
3	2	6		3	13	20	
4				4			
5				5			
		- ${ }^{-1}$,	-		-10	

Plotting

- plot(X,Y)
- $\operatorname{plot}\left(X, Y,{ }^{\prime} r^{* \prime}\right)$
- scatter (X, Y)
- axis([xlow, xhigh, ylow, yhigh])
- xlabel('time (sec)')
- ylabel('temperature (Fahrenheit)')
- title('Temperature vs. time')
- legend
- grid on
- subplot(R,C, i)
- hold on/off
- clf
- Saving plots as image files (File -> SaveAs).

Exercise

- Draw four random triangles using the plot() function. Use a different color, marker, and line type for each triangle.

Bar-plot

- $\operatorname{bar}(\mathrm{Y})$
- bar(X, Y)
- errorbar(X,Y, E)

Summary

- [...] creates vectors and matrices
- comma or space adds entries on the same row
- semicolon or linebreak introduces new row
- Linear Indexing: v (ind)
- ind can be a scalar to access an individual element
- ind can be a vector to access multiple elements
- If v is a matrix, we pretend it is a vector by considering column-by-column ordering of its elements
- "end" keyword within ind replaced with number of elements of v.
- Row-Column Indexing: $m(r, c)$
- r / c can be scalars, to access an individual element
- r /c can be vectors, to access multiple elements
- The result will have the same number of rows as r, and the same number of columns as c.
- Values in r determine which rows of m are used to fill in each result row. Values in c determine which columns of m are used to fill in each result column.
- end keyword within r replaced with number of rows of m.
- end keyword within c replaced with number of columns of m.

Summary

- $v($ ind $)=x ; m(r, c)=x ;$ When indexing is used as target of an assignment:
- If multiple elements are indexed and there is a scalar x : x is copied into each indexed position.
- If multiple elements are indexed and x is not a scalar: there needs to be the same number of elements in x and the number of positions being indexed.
- $v($ ind $)=[]$ and $m(r, c)=[]$ are used to remove the indexed entries from vector/matrix.
- When a matrix is linearly indexed, the removal of elements would force it to become a vector.

Summary

- rand, zeros, ones, inf, nan, true, false, randi
- Create a scalar, when no dimension arguments are given: rand()
- Create a square matrix, when a single dimension argument is given: rand(5)
- Create a matrix with any number of rows and columns, when two dimension arguments are given: $\operatorname{rand}(3,4)$
- randi has a reserved first input that must be provided before any dimension arguments are given.
- sum, mean, std, min, max, diff
- When a vector input given (regardless of row vector or column vector), operate on the vector.
- When a matrix is given, operate on each column separately.
- If need to perform on each row, supply a dimension argument 2.
- Some of these functions have a reserved second input argument, which must be specified before any dimension arguments are given.

Summary

- reshape() creates a matrix with different number of rows and columns, while preserving the linear order of elements
- repmat (x, r, c) uses \times as a "brick" to build a wall that is r high and c wide.

