Genome Assembly

by Ahmet Sacan

Slides adapted from: https://www.coursera.org/learn/dna-sequencing/lecture/lscgN/lecture-overlap-graphs

Genome Assembly

- Given Reads:
 - AAA, AAB, ABB, BBA, BBB
- What is the genome sequence?
- One solution:

Two classes of methods

Overlap graph

Overlap-Layout-Consensus (OLC) assembly

One <u>node</u> for each read

De Bruijn graph

De Bruijn Graph based (DBG) assembly

One edge for each read

Overlap graph

 Reads: CGTACG, TACGTA, GTACGT, ACGTAC, GTACGA, TACGAT

Overlap graph

• Reads: CGTACG, TACGTA, GTACGT, ACGTAC, GTACGA, TACGAT GTACGT

Reconstruction of Genome from Overlap Graph

• Find a walk that visits every node once. (Hamiltonian Path)

Reconstruction of Genome from Overlap Graph

• Find a walk that visits every node once. (Hamiltonian Path)

Shortest Common Superstring

 SCS: Given a set of substrings, find the shortest superstring that contains these substrings

- e.g., given reads:
 AAA, AAB, ABB, BBA, BBB
- What is the shortest genome sequence?

Greedy shortest common superstring

AAA AAB ABB BBA BBB

Greedy shortest common superstring

Greedy shortest common superstring

AAA AAB ABB BBA BBB AAAB ABB BBA BBB AAAB ABBA BBB AAAB ABBA BBB AAABBA BBB AAABBA BBB

Greedy shortest common superstring

Shorter Superstring: AAABBBA - superstring, length=7

Problems with Overlap Graph

- No known efficient solution to SCS or Hamiltonian Path
- Heuristic approaches do not guarantee best solution
- It over-collapses the repeats in the genome, resulting in fewer copies than present in the genome.

WILL
ILLY
LLYN
LYNI
YNIL
NILL
ILLY
WILLYNILLY

W ILLY N ILLY WILLYNILLY

WILL
ILLY
LLYN
LYNI
YNIL
NILL
ILLY
WILLYNILLY

genome: AAABBBBA

k=3: k-mers: AAA, AAB, ABB, BBB, BBB, BBA k-1 -mers: AA, AA AA, AB AB, BB BB, BB BB, BB BB, BB

One node per distinct k-1-mer

genome: AAABBBBA

k=3: k-mers: AAA, AAB, ABB, BBB, BBB, BBA k-1-mers: AA, AA AA, AB AB, BB BB, BB BB, BB BB, BB

One node per distinct k-1-mer One edge per k-mer

Genome Reconstruction from De Brujin Graph

AAABBBBA

Walk crossing each edge exactly once (Eulerian Path) gives a reconstruction of the genome.

Seven Bridges of Königsberg

• Find a walk that crosses each bridge exactly once.

Euler Path/Cycle

• Is there an Euler Path/Cycle?

Euler Path/Cycle

• Is there an Euler Path/Cycle?

Euler Path/Cycle

• Find a Euler Path in the following graph

Fleury's Algorithm

- Refuse if graph doesn't have 0 or 2 odd nodes.
- Start:
 - If 2 odd nodes: start from one of the odd nodes.
 - If no odd node: start from any node
- Keep walking.
- If you have a choice between a "bridge" and a "non-bridge" edge, always choose the non-bridge edge.
 A "bridge" edge is one whose removal would disconnect the remaining graph

Fleury's Algorithm

• Find a Euler Path in the following graph

Genome Reconstruction from De Brujin Graph

AAABBBBA

Walk crossing each edge exactly once (Eulerian Path) gives a reconstruction of the genome.

DeBruijn + Euler Path Genome Reconstruction Example (k=5)

a_long_long_long_time

Problem: Reads are not perfect

- Reads are:
 - longer than k
 - non-uniform
 - incomplete

Biggest Problem: Repeats

Right: graph for ZABCDABEFABY, k = 3ZA \rightarrow AB \rightarrow BE \rightarrow EF \rightarrow FA \rightarrow AB \rightarrow BC \rightarrow CD \rightarrow DA \rightarrow AB \rightarrow BY ZA \rightarrow AB \rightarrow BC \rightarrow CD \rightarrow DA \rightarrow AB \rightarrow BE \rightarrow EF \rightarrow FA \rightarrow AB \rightarrow BY

Biggest Problem: Repeats

Right: graph for ZABCDABEFABY, k = 3ZA \rightarrow AB \rightarrow BE \rightarrow EF \rightarrow FA \rightarrow AB \rightarrow BC \rightarrow CD \rightarrow DA \rightarrow AB \rightarrow BY ZA \rightarrow AB \rightarrow BC \rightarrow CD \rightarrow DA \rightarrow AB \rightarrow BE \rightarrow EF \rightarrow FA \rightarrow AB \rightarrow BY

More repeats

to_every_thing_turn __turn_there_is_a_season
__turn (repeated)

More Problems: Polyploidy

More Problems: Sequencing Errors

More Problems: Sequencing Errors

Reference Genomes are incomplete

Nature. 2015 Jan 29;517(7536):608-11.

Low