Genome Assembly

by Ahmet Sacan

Genome Assembly

- Given Reads:
- AAA, AAB, ABB, BBA, BBB
-What is the genome sequence?
- One solution:
- AAAAABABBBBABBB

Two classes of methods

Overlap graph

Overlap-Layout-Consensus (OLC) assembly

De Bruijn graph

De Bruijn Graph based
(DBG) assembly

One edge for each read

Overlap graph

- Reads: CGTACG, TACGTA, GTACGT, ACGTAC, GTACGA, TACGAT

Overlap graph

- Reads: CGTACG, TACGTA, GTACGT, ACGTAC, GTACGA, TACGAT

Reconstruction of Genome from Overlap Graph

- Find a walk that visits every node once. (Hamiltonian Path)

GTACGT

Reconstruction of Genome from Overlap Graph

- Find a walk that visits every node once. (Hamiltonian Path)

ACGTAC

Shortest Common Superstring

- SCS: Given a set of substrings, find the shortest superstring that contains these substrings
- e.g., given reads:
- $A A A, A A B, A B B, B B A, B B B$
- What is the shortest genome sequence?

Greedy Solution to SCS

Greedy shortest common superstring

AAA AAB ABB BBA BBB

Greedy Solution to SCS

Greedy shortest common superstring

AAA AAB ABB BBA BBB
$\stackrel{\downarrow}{\mathrm{AAAB}}{ }^{\swarrow} \mathrm{ABB}$ BBA BBB

Greedy Solution to SCS

Greedy shortest common superstring

Greedy Solution to SCS

Greedy shortest common superstring

$$
\text { AAABBABBB } \longleftarrow \text { superstring, length=9 }
$$

Shorter Superstring: \quad AAABBBA \longleftarrow superstring, length=7

Problems with Overlap Graph

- No known efficient solution to SCS or Hamiltonian Path
- Heuristic approaches do not guarantee best solution
- It over-collapses the repeats in the genome, resulting in fewer copies than present in the genome.

De Bruijn Graph

WILL	ILLY	LLYN	LYNI	YNIL

WILL
ILLY
LLYN
LYNI
YNIL
NILL
ILLY
WILLYNILLY

De Bruijn Graph

W
ILLY
N
ILLY
WILLYNILLY

De Bruijn Graph

WILL	ILLY	LLYN	LYNI	YNIL

WILL
ILLY
LLYN
LYNI
YNIL
NILL
ILLY
WILLYNILLY

De Bruijn Graph

genome: AAABBBBA
k=3: k-mers: $A A A, A A B, A B B, B B B, B B B, B B A$
k-1-mers: $\quad A A, A A \quad A A, A B \quad A B, B B \quad B B, B B \quad B B, B B \quad B B, B A$

One node per distinct k-1-mer

De Bruijn Graph

genome: AAABBBBA

One node per distinct k -1-mer One edge per k-mer

Genome Reconstruction from De Brujin Graph

AAABBBBA

Walk crossing each edge exactly once (Eulerian Path)
gives a reconstruction of the genome.

Seven Bridges of Königsberg

- Find a walk that crosses each bridge exactly once.

Euler Path/Cycle

- Is there an Euler Path/Cycle?

Euler Path/Cycle

- Is there an Euler Path/Cycle?

Euler Path/Cycle

- Find a Euler Path in the following graph

Fleury's Algorithm

- Refuse if graph doesn't have 0 or 2 odd nodes.
- Start:
- If 2 odd nodes: start from one of the odd nodes.
- If no odd node: start from any node
- Keep walking.
- If you have a choice between a "bridge" and a "nonbridge" edge, always choose the non-bridge edge.
- A "bridge" edge is one whose removal would disconnect the remaining graph

Fleury's Algorithm

- Find a Euler Path in the following graph

Genome Reconstruction from De Brujin Graph

AAABBBBA

Walk crossing each edge exactly once (Eulerian Path)
gives a reconstruction of the genome.

DeBruijn + Euler Path Genome Reconstruction Example ($k=5$)

$$
\begin{aligned}
& \text { a_long_long_long_time } \\
& \text { a_lon ng_lo } \\
& \text { _long g_lon } \\
& \text { long_ _long } \\
& \text { ong_l long_ } \\
& \text { ng_lo ong_t } \\
& \text { g_lon ng_ti } \\
& \text { _long g_tim } \\
& \text { long_ _time } \\
& \text { ong_1 }
\end{aligned}
$$

DeBruijn + Euler Path Genome Reconstruction Example ($k=5$)

a_lon ng_lo
_long g_lon
long_ _long
ong_l long_
ng_lo ong_t g_lon ng_ti
_long g_tim
long_ _time
ong_l

a_long_long_long_time

Problem: Reads are not perfect

- Reads are:
- longer than k
- non-uniform
- incomplete

Genome: a_long_long_long_time
Reads: a_long_long_long, ng_long_l, g_long_time

Biggest Problem: Repeats

Right: graph for ZABCDABEFABY, $k=3$

$$
\begin{aligned}
& \mathrm{ZA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BE} \rightarrow \mathrm{EF} \rightarrow \mathrm{FA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BC} \rightarrow \mathrm{CD} \rightarrow \mathrm{DA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BY} \\
& \mathrm{ZA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BC} \rightarrow \mathrm{CD} \rightarrow \mathrm{DA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BE} \rightarrow \mathrm{EF} \rightarrow \mathrm{FA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BY}
\end{aligned}
$$

Biggest Problem: Repeats

Right: graph for ZABCDABEFABY, $k=3$

$$
\begin{aligned}
& \mathrm{ZA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BE} \rightarrow \mathrm{EF} \rightarrow \mathrm{FA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BC} \rightarrow \mathrm{CD} \rightarrow \mathrm{DA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BY} \\
& \mathrm{ZA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BC} \rightarrow \mathrm{CD} \rightarrow \mathrm{DA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BE} \rightarrow \mathrm{EF} \rightarrow \mathrm{FA} \rightarrow \mathrm{AB} \rightarrow \mathrm{BY}
\end{aligned}
$$

More repeats

More Problems: Polyploidy

More Problems: Sequencing Errors

More Problems: Sequencing Errors

Reference Genomes are incomplete

Chaisson MJ, et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature. 2015 Jan 29;517(7536):608-11.

