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ABSTRACT

Motivation: The rapidly growing protein structure repositories have

opened up new opportunities for discovery and analysis of functional

and evolutionary relationships among proteins. Detecting conserved

structural sites that are unique to a protein family is of great value

in identification of functionally important atoms and residues.

Currently available methods are computationally expensive and fail

to detect biologically significant local features.

Results: We propose Local Feature Mining in Proteins (LFM-Pro) as

a framework for automatically discovering family-specific local sites

and the features associated with these sites. Our method uses the

distance field to backbone atoms to detect geometrically significant

structural centers of the protein. A feature vector is generated from

the geometrical and biochemical environment around these centers.

These features are then scored using a statistical measure, for their

ability to distinguish a family of proteins from a background set

of unrelated proteins, and successful features are combined into

a representative set for the protein family. The utility and success

of LFM-Pro are demonstrated on trypsin-like serine proteases family

of proteins and on a challenging classification dataset via compar-

ison with DALI. The results verify that our method is successful

both in identifying the distinctive sites of a given family of proteins,

and in classifying proteins using the extracted features.

Availability: The software and the datasets are freely available

for academic research use at http://bioinfo.ceng.metu.edu.tr/Pub/

LFMPro

Contact: ahmet@ceng.metu.edu.tr, {ozturk,hakan,yusu}@cse.ohio

state.edu

1 INTRODUCTION

Rapidly growing protein structure repositories open up new

possibilities for discovering functional and evolutionary

relationships among proteins, and for elucidating the principles

by which a certain structure produces an observed function.

The increase in data size, however, also calls for more efficient

and accurate methods of comparing proteins and identifying

potential functional residues and binding sites.

The classical approaches of structural analysis have focused

on global pairwise structural alignment of proteins to detect

similarities and help transfer of information about a well-

known protein to unknown proteins that can be structurally

aligned to it. The structural alignment methods, however,

are computationally intensive and do not lend themselves to

large-scale comparisons. Moreover, they miss remote homo-

logies, especially when the proteins share only a local region.

Many proteins have a multi-domain nature, and the global

similarities alone are not sufficient to identify functional

similarities existing in distinct local domains. Inevitably, local

structural motifs are often required for identification of

biological function and homology relationships (Hodgman,

1989; Taylor and Jones, 1991). Manual identification of these

regions require intensive genetic and molecular biology

experimentation, which may take years of diligent studies.

An automated method of detecting potential sites would thus

be very much appreciated. We therefore focus, in this study,

on automatic discovery of local sites of proteins which have

distinguished structural and biochemical features, and may

thereby have functional significance.
Previous approaches have assumed that such functional

sites are already known (Bagley and Altman, 1995; Wallace

et al.,1996) and have focused on building a description, rather

than automatic detection of these sites, with the hope of

cataloguing these descriptions as structural motifs, so that

unknown proteins could be annotated via comparison with

these motifs. The Local Feature Mining in Proteins (LFM-Pro)

framework proposed in this study starts with a group of

proteins that share a certain function, and does not assume any

prior knowledge about the location or nature of the functional

sites. Through comparison of this group of proteins with

a background set of unrelated proteins, it is able to detect

sites that yield features unique to the family members.
Structural motif search is generally based on graph

theoretical algorithms (Huan et al., 2005; Spriggs et al.,

2003), geometric hashing (Shatsky et al., 2005; Wallace et al.,

1997) and others (Singh and Saha, 2003). In order to discover

motifs, these methods search for commonly recurrent local

structures in space, based on their specific models. The graph

theoretic approaches generally require exponential time in the
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number of the localities being matched. The computational
bottle neck of these approaches prevent effective automated
detection of local motifs. More importantly, these methods

analyze the protein at the residue level, and fail to handle
substitutions of the amino acids or displacements of the
backbone. It has been shown that residues can adopt quite

different conformations while managing to conserve the posi-
tions of their important functional atoms (Wallace et al., 1996).
Therefore, an efficient method that can analyze the protein

structures at the finer granularity of atomic level is needed.

2 APPROACH

We focus on identification of local sites which are unique to a
family of proteins sharing a certain structural or functional

property. A site can be defined as a 3D location in the protein,
and a local spatial neighborhood around this location having
a certain structure or function (Bagley and Altman, 1995).

In order to mine a protein dataset for possible functional sites,
we are faced with three main challenges.
The first challenge is deciding on a data structure for

sampling of the 3D distributions of the site locations and
determining the size of their spatial neighborhood. For this
purpose, a 3D grid has previously been utilized (Bagley and

Altman, 1995; Goodford, 1985). Although grids offer compu-
tational advantages, the protein space has to be sampled in high
resolution in order to capture microenvironments, which causes

very large grids, defeating the purpose of using a grid-based
distribution. Some methods therefore only consider local

patterns centered at each residue or at some manually chosen
positions as potential motifs (Jonassen et al., 2001; Liang et al.,
2003), possibly missing motifs not centered around such

positions. Furthermore, these methods usually miss relatively
rare and novel motifs. An automatic method that produces a
concise yet complete coverage of the motif space is still missing.

The method we present in this article is able to efficiently
sample the motif space for identification of unique structural
and functional local motifs. Our method relies on a novel

computational geometry method for identification of topo-
logically significant locations and also dynamically adjusts
the size of the site based on the residues surrounding the

microenvironment.
The second challenge is the characterization of the micro-

environment features. Presence of certain amino acid types

as the basic feature (Munson and Singh, 1997; Singh et al.,
1996) does not provide a detailed characterization of the site,

and may miss certain motifs because of the similarity and
substitutability of amino acids. More detailed characterization
of the microenvironment (Bagley and Altman, 1995) consider

properties such as hydrophobicity, mobility and solvent
accessibility which can capture the physico-chemical nature of
the site at the cost of requiring more time for the computation

of these properties. We have found that using the atom
frequencies (Li and Parthasarathy, 2001; Milik et al., 2003) is a
good trade-off between accuracy and efficiency in characteriz-

ing the microenvironment for the purpose of local motif
detection. Moreover, unlike previous studies, we also augment
the feature vector to capture the topological information of the

backbone surrounding the microenvironment.

The last main challenge is having an efficient and sensitive

method for detecting common patterns. Determining which

motifs are responsible for an observed function is a difficult

task. Graph theoretic approaches try to find common

subgraphs, but they are currently not scalable for large space

of possible motifs, and they cannot easily handle noise in the

data or substitution of residues. Statistical methods have been

used (Bagley and Altman, 1995) in characterization of the motif

structure while comparing a group of known sites and non-

sites, but these methods rely on a priori knowledge of the

functional sites. Whereas, the method we present uses a

data-mining approach to discover distinguishing functional

sites shared by a family of proteins without requiring prior

knowledge of the location or nature of these sites. Moreover,

it is robust to noisy patterns, and can handle incorrect initial

classification of the data.

3 METHODS

Figure 1 shows an overall flowchart of the steps followed in LFM-Pro.

We first identify topologically significant local structural centers of

each protein, by calculating the critical points of a particular distance

field. A ball centered around each critical point defines the spatial

neighborhood of these structural centers. Each critical point is then

associated with topological and biochemical features of its spatial

environment.

Once we generate the feature vectors for each critical point of the

proteins, a family of proteins are then searched for shared feature

vectors. The aim here is to find critical points unique to a family;

therefore, a set of shared feature vectors are chosen such that it is able

to distinguish the members of the protein family from a background set

of proteins that lack the properties and functions of interest. The group

of critical points that are unique to a family are combined to obtain

a representative feature set for the family. In the following subsections,

each of these steps are described in detail.

Fig. 1. The general strategy of LFM-Pro. For each protein: (1) location

of the critical points of distance field to backbone atoms are identified,

(2) the critical points are filtered to remove non-persistent or

unimportant ones, (3) a feature vector that captures the topological

and biochemical properties of its spatial neighborhood is associated

with each critical point. (4) Feature vectors for the remaining critical

points of each protein in the dataset are pooled and (5) those that are

generated from family members are assessed for their ability to

discriminate the family proteins from the rest of the dataset. (6) The

critical points that display the best discriminating behavior in step 5 are

combined into a representative feature set of the family.
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3.1 Sampling of the structural centers

Given a protein P as the set of its alpha Carbon (C�) atom centers

P ¼ fp1, . . . ; png, the distance function �P : R3 ! R w.r.t. P is defined

as follows: �PðxÞ is the nearest distance from x to any pi 2 P. �P

describes the influence of (the backbone atoms of ) protein P to its

neighboring space via the distance field. Intuitively, if two proteins have

similar structure, they should have similar distance fields. In particular,

if there are regions in space where proteins display similar local

structural patterns, then they should have similar distance fields in

and around that region as well.

We identify the potential motif centers by finding the critical points

of this distance function. Formally, critical points of a smooth function

g, are points with vanishing gradients. In our case, for a function

defined over R
3, there are four types of critical points: local minima,

local maxima and two types of saddle points. Note that, when distance

to backbone atoms is used as function g, it turns out that the set of

critical points of �P is the set of intersection points between some

Delaunay simplex (a point, edge, triangle or tetrahedron) with its dual

Voronoi elements (a polytope, face, edge, point, respectively) (Fig. 2),

and can be computed in Oðn2Þ time where n ¼ jPj (Giesen and John,

2003).

We now collect � as the set of critical points of the distance function.

Some examples of structural motifs that such critical points can capture

are illustrated in Figure 3. The spatial neighborhood of a critical point

is defined as the spherical region centered at the critical point,

whose radius is its distance function value.

Following the generation of all critical points of distance, we perform

a filtering of these points to eliminate noise. The structural importance

of the critical points were assigned using the topological persistence

algorithm from Edelsbrunner et al. (2002), and those with small

persistence were removed from�. This topological method of removing

noise is fundamentally different from those that employ clustering of

neighboring points, in terms of the type of noise it removes. Roughly

speaking, it measures the importance of a feature (critical point) by

measuring how persistent this feature remains if the distance field

is perturbed. Note that filtering based on persistence effectively

eliminates the noise inherent in the crystallography methods used

to obtain the atom coordinates. After the filtering step, the number

of remaining critical points are roughly the same as the number

of the amino acids in the protein.

3.2 Characterizing the spatial neighborhood

As a by-product of our structural center sampling method, we have a

natural way to decide the neighborhood size, which is better than

prefixing some threshold value. For the spatial neighborhood around

each critical point, we associate a feature vector, based on both the

structural and biochemical nature of the neighborhood. The structural

features include: the persistence value of the critical point, the radius of

the neighborhood and the writhing number. The biochemical features we

use are based on the frequency and location of the constituent atoms

within the neighborhood.

The writhing number, or writhe, is originally used to measure the

supercoiling phenomenon for a space curve, and has been used to

characterize both DNA (Fuller, 1978; Klenin and Langowski, 2000;

Swigon et al., 1998) and protein structures (Levitt, 1983; Rogen and

Fain, 2003). We compute the writhe of those backbone pieces contained

within the spatial neighborhood to measure their relative spatial

arrangements.

In order to capture the biochemical nature of the spatial environ-

ment, we use the frequencies of each of the side-chain carbon, nitrogen,

oxygen and sulfur atoms within the spherical region. Furthermore,

the location information of these atoms is captured by computing the

center of mass for each atom type. Note that our framework can be

easily extended to use physico-chemical properties such as hydro-

phobicity, solvent accessibility, Van der Waals radii or mobility, which

can capture more detailed information about the spatial environment

(Bagley and Altman, 1995). However, we did not use such extended

features in this study, because of the computational cost they incurred.

3.3 Mining for a representative feature set

Each protein pi now has a set � ¼ fc1; . . . ; cng of feature vectors

generated from its important critical points. Let F ¼ fp1; . . . pmg denote

a family of proteins that are known to share a common structural or

functional property. And let the set G denote the rest of the proteins

in the dataset. We wish to determine the critical points that are unique

to family F, and assess their ability to discriminate the proteins within

the family from the rest of the proteins. Note that the algorithm

to detect family-specific critical points has to allow changes in the

values of the feature vectors. We utilized a distance-based approach

for this purpose.

Fig. 2. Delaunay tessellation (dashed lines) and Voronoi diagram

(solid lines) of a set of points in 2D. Region enclosed by a Voronoi

polyhedron is the area that is closest to the enclosed point than to any

other point in the set. Delaunay tesselation is obtained by connecting

points that share a boundary. In 3D, Delaunay tessellation would give

space-filling tetrahedra. A circle (sphere) can be drawn whose center is

a vertex of Voronoi diagram and which passes through the points in

the corresponding Delaunay triangle (tetrahedra).

(a) (b)

Fig. 3. Two types of motifs captured by critical points of the distance

function. In (a), four pieces of protein backbone come close in space,

forming a contact as indicated by the tetrahedron in the middle.

The double point is a local maximum of �. In (b), the cross-point is a

saddle point. Local spatial patterns can be captured by taking a ball

centered at these critical points.
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The dissimilarity dðci; cjÞ of any given two critical points can be

defined in terms of an appropriate distance function between their

corresponding feature vectors. We observed that a simple Euclidean

distance measure on normalized feature vectors was sufficient in

detecting family-specific structural centers. A weighted Euclidean

distance, that can highlight varying contributions of the individual

environment features could also be designed by optimizing the weights

against an objective function.

When comparing a critical point cx to a protein p, we take the

distance of cx to its closest match in p as defined with the distance

function:

dðcx; pÞ ¼ minfdðcx; c1Þ, . . . ; dðcx; cnÞg

where c1, . . . ; cn are the critical points of the protein p. Intuitively, if a

critical point cx is part of a protein p, one would expect a very small

value for dðcx; pÞ.

For each candidate critical point cx of the proteins in the family F, we

calculate its distance to all the proteins in the dataset. For an ideal

discriminative critical point, the distances to the proteins in F would be

clustered at a minimal, whereas the distances to the rest of the proteins,

G, would take upon higher values. We modeled this intuition by

defining the discrimination score s of a critical point as follows:

sðcxÞ ¼
�ðcx;GÞ

ð1þ �ðcx;F ÞÞ � ð1þ �ðcx;F;GÞÞ
ð1Þ

where �ðcx;FÞ is the average distance of cx to proteins in the family F,

�ðcx;F Þ ¼ avgðdðcx; p 2 F ÞÞ ð2Þ

and � is the number of background proteins that have a

distance smaller than the maximum within-family distance

d �ðcx;F Þ ¼ maxðdðcx; p 2 F ÞÞ.

�ðcx;F;GÞ ¼ countðdðcx; p 2 GÞ � d �ðcx;FÞÞ ð3Þ

In Equation (1), �ðcx;F Þ and �ðcx;GÞ ensure that those critical

points that have small within-family distance and high out-of-family

distance get higher discrimination scores. The average distances alone,

however, do not guarantee a clear separation of the family proteins

from the rest. The term � favors those critical points that can cluster

the family proteins with minimal number of out-of-family proteins.

In other words, � works to select features common to family, while �

works to avoid features that cannot discriminate family proteins from

the rest. Each term in the denominator is padded with 1 for numerical

stability.

Using the discrimination scores, we obtain a set of critical points

ranked by the scores reflecting how representative they are for a given

family F. We refer the collection of the critical point features with their

associated scores as the representative feature set of the family.

3.3.1 Classification modeling Let � ¼ fc1; . . . ; cng be the repre-

sentative feature set of family F, with corresponding discriminative

scores S ¼ fs1; . . . ; sng and maximum within-family distances

D� ¼ fd �
1; . . . ; d

�
ng. The membership score of a new protein p to the

family F is calculated as follows:

 ð p;F Þ ¼
1

n

X

i¼1:::n

si
d �
i � dðci; pÞ

dðci; pÞ
ð4Þ

The membership score  , is dominated by the matching features that

have small distance and high representative scores. The numerator term

in the summation in Equation (4) provides a threshold logic based on

the maximum within-family distances d *. Those features that match

the protein with a distance smaller than d * contribute positively in the

membership score, whereas those that have a greater distance are

penalized in the scoring. The overall membership score reflects how

well a protein matches a representative feature set. In a multi-family

classification scheme, the membership score  ð p;F Þ can be used to

assign the protein p to the closest family.

4 RESULTS

4.1 Experimental setup

All the experiments were conducted on a single processor

Pentium 4 PC with 2.8GHz CPU and 1GB main memory.

The selection of centers via determination of critical centers

of the distance function was implemented in Python and C,

using CGAL (CGAL, 2006) computational geometry library;

the feature extraction and mining methods were developed

under Matlab environment.
The proteins used in this study were selected from the

representative ASTRAL (Brenner et al., 2000) dataset of SCOP

1.69 (Murzin et al., 1995) with 540% sequence homology.

There were a total of 7237 entries in the ASTRAL dataset.
The one-time-only generation of critical points and their

corresponding feature vectors took 49 s on the average per

protein.

4.2 Mining functional sites

The success of LFM-Pro could be assessed by applying it to

protein families that have well-defined functional sites,

and investigating whether the sites detected by LFM-Pro

match the known functional sites in these proteins. Serine

proteases are the most studied family of proteins, in the context

of structural motif extraction (Bagley and Altman, 1995;

Huan et al., 2004, 2005 Milik et al., 2003; Wallace et al.,

1996). We follow the tradition and also use serine proteases for

this study. The proteins were selected from the SCOP super-

family (b.47.1.*) ‘trypsin-like serine proteases’, here on referred

as the superfamily and included both prokaryotic (PSP: 10

SCOP entries) and eukaryotic (ESP: 19 SCOP entries) proteins,

which share the same catalytic site.
The local site mining for the SP family took 30 s to complete.

Note that, with the same number of localities to compare,

the subgraph mining methods may take several days to

complete (Huan et al., 2005). Figure 4 shows the mapping of

Fig. 4. Mapping of the top-scoring sites onto Alpha-lytic protein (1ssx).

The features were obtained by mining SP dataset against a random set

of 200 background proteins. Left: Features 1, 2, 4 and 5 span the

neighborhood of the catalytic triad, whereas feature 3 contains a

distant disulfide bridge CYS189–CYS220. Right: A closer look into

the catalytic region spanned by features 1, 2, 4 and 5. The residues

whose side-chain atoms are contained within these sites are shown.
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the top-scoring features on Alpha-lytic protein (1ssx). The top
sites obtained by the feature mining algorithm corresponded

to the catalytic triad site of the serine proteases. The atoms

within the immediate neighborhood of the catalytic triad have

relatively conserved positions, which is successfully picked

up by the mining algorithm. The highest scoring site contained
atoms of the residues Ser195, His57, Asp102, Ser214 and Ala55.

The residues Ser195–His57–Asp102 form the charge relay

system responsible for the hydrolytic cleavage of the appro-

priate substrate. Ser214 has also been found to be highly

conserved in SP (Wallace et al., 1996). We also observed that
Ala55 is conserved in SP and we speculate that Ala55 keeps

the catalytic triad in its relative orientation via Van der Waals

interactions.
The third highest scoring site includes the disulfide bridge

Cys189–Cys220, which is distant to the catalytic site, but is

nevertheless conserved across serine proteases. This disulfide

bond keeps the backbone such that Ser195 and Ser214 can

remain in close proximity. The next highest scoring site is
another disulfide bridge, Cys42–Cys58, which helps keep the

His57 and Ala55 residues within the catalytic site 4.

4.2.1 Selection of background proteins One interesting
question is whether the use of a background set of proteins

is really necessary, i.e. whether it would be possible to detect the

functional sites by just finding features common to a family

of proteins, without comparison to unrelated proteins. Figure 5
illustrates the effect of the size and nature of the background

class of proteins on the detection of functional site in SP.

The rank of the first feature that map to the catalytic triad site

is used as the basis of evaluation.
We expected that the performance of the algorithm would

improve with increasing number of out-family proteins used.

As the size of the background set is increased, the contribution

of �ðcx;F Þ term in Equation(1) decreases, which translates into

distinguishing features ranking higher than common features.

Figure 5 shows that for each type of background set of proteins

we used, the algorithm was able to detect the functional site,

when given a sufficiently large number of background proteins.
Furthermore, Figure 5 demonstrates that using proteins that

share structural features with the family under investigation

increases the accuracy of the mining. When random out-family

members were selected from b.* SCOP class of all-beta

proteins, the functional triad site is detected among the

top-scoring sites, even with only a few out-family proteins.

Whereas, significantly more proteins are needed in the out-

family set if one uses a.* SCOP class of all-alpha proteins,

which share little structural fold similarity with SP. This

observation is attributed to the fact that proteins that share

structural folds with the investigated family can better prune

out insignificant scaffold sites and enhance detection of

unique sites.

Furthermore, Figure 5 demonstrates that using proteins that

share structural features with the family under investigation

increases the accuracy of the mining. When random out-family

members were selected from b.* SCOP class of all-beta

proteins, the functional triad site is detected among the top-

scoring sites, even with only a few out-family proteins.

Whereas, significantly more proteins are needed in the out-

family set if one uses a.* SCOP class of all-alpha proteins,

which share little structural fold similarity with SP. This

observation is attributed to the fact that proteins that share

structural folds with the investigated family can better prune

out insignificant scaffold sites and enhance detection of unique

sites.
The set of background proteins needed to obtain the most

desirable feature-mining results would depend on the specific

family being studied. Even though all available proteins can be

used as the background set G, it may be desirable to reduce the

size of G for efficiency purposes. As a general guideline, we

recommend the use of proteins that share the same structural

folds, but are missing the target function of interest.

4.2.2 Selection of family proteins While seeking features
that are distinguishing from unrelated proteins, we also seek

that these features be common across the family. For this

reason, appropriate selection of the family proteins plays an

important role in detection of functional sites. Figure 6

demonstrates the effect of composition and size of the family

proteins on detection of the catalytic triad. The region of the

catalytic triad is more conserved in eukaryotic proteins,

giving the functional site a higher score. When PSP and ESP

proteins are combined (SP), the family set would contain an

evolutionarily more diverse set and the algorithm can attribute

lower scores to those sites that are unique only to either of

these two families, and highlight the functional site that is

shared by both protein families.

Appropriate composition of the family proteins was more

effective in mining for the functional site than simply increasing

the size of the family. In fact, increasing the number of proteins

did not give the catalytic triad significantly higher scores in PSP

or ESP families. For PSP and ESP families, the high-scoring

features involved the sites that represent the hydrophobic cores
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Fig. 5. The effect of the size of the background set G on detection of the

functional site. Results given for mining SP dataset against selection of

proteins using three sets of proteins: all proteins, only b.* all-beta class,

or only a.* all-alpha class. The size of G is shown up to 150 proteins for

illustration purposes; the rank of the mined functional site did not

change beyond 150 proteins.
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and loops in the secondary structure. These spatial regions

show greater variation across proteins, and are detected as

representative of the family when a smaller family set is used.

4.3 Binary classification

To investigate the classification capabilities of LFM-Pro, we

used a dataset that was previously utilized under a binary

classification scheme (Huan et al., 2004). The first dataset (C1)

includes two families from different SCOP classes: nuclear

receptor ligand-binding domain proteins (NB, 16 proteins)

from all-alpha class, and the prokaryotic serine protease family

(PSP, 10 proteins) from all-beta class. The second dataset (C2)

uses ESP (19 proteins) and PSP families which belong to the

same superfamily. Note that PSP and ESP were used together

above in the functional site-mining experiments. Whereas, the

goal in this section is to evaluate the discrimination power of

the representative feature sets for clearly distinct families (C1)

and closely related families (C2). The proteins were selected

from the Culled-PDB list (Wang and Dunbrack, 2003) with

560% identity.
For families in datasets C1 and C2, the feature sets were

extracted and scored as described above, and these representa-

tive feature sets were used for binary classification of proteins.

The subgraph-mining approach in Huan et al. (2004) have

achieved perfect accuracy for C1 dataset, where the two families

are from different SCOP classes, but had 5% classification

error for the C2 dataset, in which the two families belong to the

same superfamily. LFM-Pro classifies the proteins in both of

these datasets with 100% accuracy, when all the extracted

features were used in classification (Table 1). We attribute the

success of LFM-Pro, in comparison with the graph-mining

approaches, to the fact that it can accommodate amino acid

substitutions and displacements in the backbone, and focuses

on the individual atoms within a spatial neighborhood rather

than the coarser level information about location of CA atom
of the amino acid residues.

In LFM-Pro, each feature in the representative feature set
contributes according to its corresponding score, which

guarantees that the features that are not as discriminative as
the top-scoring features do not distort the classification, but
only fine-tune it. However, it may be desirable for efficiency

and maintenance purposes, to keep only a small fraction of the
top-scoring features for classification. Even though perfect

accuracy was achieved in C1 dataset using a single feature;
the classification was more stable when420 features are used.
Considerably more features were required to distinguish the

closely related families in the C2 dataset.

4.4 Multi-class classification

In order to further validate our method, we performed a multi-

class classification experiment on a more challenging dataset.
Namely, the new entries introduced in SCOP 1.69 were

classified based on family representations generated from
SCOP 1.67. For both SCOP versions, ASTRAL dataset with
540% were used. The proteins or families that were re-classified

in 1.69 and families that contain a training set55 members were
ignored. The final dataset contained 90 families with a total of

1056 training proteins from SCOP 1.67 and 157 test proteins
that were newly added in SCOP 1.69.
For comparison, the test proteins were also classified based

on pairwise DALI (Holm and Sander, 1993) scores, such that
a query protein is assigned to the family of the protein with
highest pairwise Z score. The results of multi-class classification

experiment are tabulated in Table 2. The restriction of 40%
homology in the dataset makes it particularly challenging.

Moreover, an increase in the number of families result in higher
number of false positives. DALI could only classify 31.2%
of the test proteins correctly, whereas LFM-Pro obtained a

classification accuracy of 37.58%.
Note that the proteins classified correctly by LFM-Pro are

disjoint from those classified correctly by DALI. Combining

DALI and LFM-Pro results and assuming an oracle to decide
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Fig. 6. The effect of the size and composition of the family set F on

detection of the functional site. The background set G for this

experiment is composed of 200 randomly selected proteins from the

b.* SCOP class of all-beta proteins.

Table 1. Binary classification results

Dataset Method Features Dist.Feat Accuracy (%)

C1 DT 20 646 934 100

AD 23 130–37 394 1093–1674 96–100

LFM-Pro 5282 1 100

C2 DT 15 895 20 95

AD 18 491–32 569 29–36 93–95

LFM-Pro 2180 139 100

The methods Delaunay tesselation (DT) and almost Delaunay (AD) are from

subgraph-mining approach in (Huan et al., 2004); results for the AD entry are

given for a range of allowable perturbation values (�¼ 0.1–0.75). The fourth

column shows the number of features that have discrimination power above 0.75,

as defined by the authors; and the number of features required to obtain

maximum accuracy in LFM-Pro. Accuracy is defined as the fraction of correct

predictions measured by 5-fold cross validation.
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which one to use for a give protein, 56.05% accuracy is

possible. Therefore, a classifier combining the output of these

complementary methods would achieve higher accuracy, which

is among our future research goals.

5 DISCUSSION

We have presented a data-mining based framework, LFM-Pro,

whereby topologically and biochemically conserved regions of a

protein family could be automatically discovered. We have

demonstrated the success of the method on serine protease

family of proteins and also on two binary classification

datasets. The sites unique to a family of proteins were identified

via comparison to a background set of proteins. We have

confirmed that the sites detected by our method conforms with

the previously reported functional sites. When a background set

of proteins is not provided, LFM-Pro scores the local sites

based on how common they are across the family proteins.

LFM-Pro gives the most desirable site-mining results when

the family being studied contains proteins that are evolutiona-

rily distant but share the site of interest, and when the

background family is chosen to contain proteins that share

the same structural folds with the family being studied. The

objective of maximizing the discriminative scores can be used

to determine the optimal size of the background set in feature

mining, and the optimal number of features in classification.

LFM-Pro uses feature vectors associated with local neigh-

borhoods that provides comprehensive sampling of the protein

space. One of the major advantages of a feature-based

approach is the computational efficiency; because the time-

consuming graph matching or structural alignment steps are

no longer required. Moreover, the feature vectors can be

stored in an index structure optimized for range queries, which

would further improve the efficiency of the algorithm.

A custom-filtering step to remove features related to trivial

secondary structures can also be performed to reduce the

number of candidate features, which would further increase the

efficiency of the algorithm.
The framework presented in this study is easily extensible

to more sophisticated feature extraction and scoring schemes.

One may, for example, augment the features presented

here with physico-chemical features such as hydrophobicity,

solvent accessibility or mobility. It would also be interesting

to investigate critical points of other function fields, such as

force fields. Note that we utilized a simple unweighted

Euclidean distance function for measuring the dissimilarity

between feature vectors and it was our experience that the
algorithm allowed imperfect distance functions. However,

fine-tuning the weights of the spatial features may be desirable

in order to highlight the contributions of each feature in the
representation of local sites. The weights of the distance

function can be automatically optimized with the objective of

maximizing the discriminative scores of the representative set.

We have provided in the software distribution of LFM-Pro,
a simulated annealing approach for such fine-tuning.

Using local structural and biochemical features as opposed
to structural alignment of proteins, can potentially yield in

identification of very distant evolutionary relationships, and

can help discern the function of yet uncharacterized proteins.

Local sites of the proteins resist evolutionary modifications
if they perform an important biological function, whereas the

rest of the protein simply provides a scaffold and is more

prone to modifications through mutation, insertion, deletion
and duplication events. Therefore, related proteins can share

a common evolutionary ancestry or a common biological

function, which may only be identifiable through comparison

of these local sites.
Inference of remote homology is also a key step in

evolutionary-based cataloguing of all available protein struc-
tures. Assigning a new protein to unique positions in the

classification scheme becomes impossible when the homology

is not detectable. Using LFM-Pro, it is possible to identify

a distinguishing representative feature set for each family, and
to quickly assign a new protein to one (or more, for multi-

domain proteins) of these families. For instance, using the

representative feature set generated by LFM-Pro for Globins
family of proteins, we were able to discover proteins 1uby, 1gai

and 1xis to have similar distinctive sites as the Globins.

These three proteins were not previously classified to have

structural or functional similarities with Globins; however,
a multiple alignment revealed that they could indeed be

significantly aligned with Globins, confirming the detection

by LFM-Pro.
Effective discovery of functional local motifs would have

tremendous impact in bioscience research and would find

applications in areas such as multiple structural alignment,
protein modeling, drug design and targeting. As a future work,

we plan to undertake a large-scale, systematic study where we

would extract representative feature sets for all SCOP families
and provide them as a publicly available motif database.

The feature vectors extracted from the proteins also lend

themselves for an unsupervised learning method where unique

functional sites could be automatically discovered without any
prior family-membership information.
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