
Approximate Similarity Search in Genomic Sequence Databases using
Landmark-Guided Embedding

Ahmet Sacan †,‡
†Dept. of Computer Science and Engineering

The Ohio State University
Columbus, OH, USA

sacan@cse.ohio-state.edu

I. Hakki Toroslu ‡
‡Computer Engineering Dept.

Middle East Technical University
Ankara, Turkey

toroslu@ceng.metu.edu.tr

Abstract

Similarity search in sequence databases is of paramount
importance in bioinformatics research. As the size of the
genomic databases increases, similarity search of proteins
in these databases becomes a bottle-neck in large-scale
studies, calling for more efficient methods of content-based
retrieval. In this study, we present a metric-preserving,
landmark-guided embedding approach to represent se-
quences in the vector domain in order to allow efficient in-
dexing and similarity search. We analyze various properties
of the embedding and show that the approximation achieved
by the embedded representation is sufficient to achieve bi-
ologically relevant results. The approximate representation
is shown to provide several orders of magnitude speed-up
in similarity search compared to the exact representation,
while maintaining comparable search accuracy.

1 Introduction

With the advent of high-throughput sequencing methods,
the genomic sequences have been accumulating at an ever
increasing rate. GenBank, a central database of publicly
available DNA sequences, has been doubling in size ev-
ery 15 months [3]. Since the sequencing of Hemophilus
influenza in 1995, close to 700 organisms have been com-
pletely sequenced and published, and there are currently
more than 3000 ongoing genome sequencing projects [14].

Homology search over these genomic sequence
databases is a crucial step in the inference of functional
and evolutionary relationships among proteins. According
to a survey, similarity search makes up 35% of the tasks
in bioinformatics research [10]. The increase in database
size and the demands of large-scale analysis have been the
driving forces of several efforts to speed up the similarity
search process. The most successful of these efforts have

been based on fast retrieval and stitching of common short
subsequences. The goal of this study is to develop more
effective common subsequence retrieval methods without
significant compromise to the sensitivity of the similarity
search results.

BLAST [1], which is currently the popular tool for bi-
ological homology search, is based on a heuristic that as-
sumes presence of short exact matches between homolo-
gous sequences. For a given subsequence length k, a hash
table of all possible k-mers is used to map the subsequences
in the database. For a new query sequence, all k-mers of the
query are searched using the hash table for finding match-
ing k-mers in the database. The k-mer hits of the database
are then tested for extension to generate longer matching
regions and obtain the final local alignments [21].

There have been several improvements over BLAST that
achieve more efficient or sensitive identification of evolu-
tionarily close k-mers. These improvements were obtained
mainly by relaxing the “short exact matches” assumption
of BLAST’s heuristic approach. Pattern Hunter [15] uses
non-consecutive residues to construct k-mers, detecting re-
placements in the sequence better. The Piers method [6]
guides inexact matching of short query segments using ran-
domly selected seeds, achieving faster response at the cost
of a small degradation in sensitivity.

In contrast to BLAST-like methods that are based on
hashing short sequences, there have been indexed search
approaches to the sequence retrieval problem. Note that the
sequences are not objects in a multi-dimensional Euclidean
space, which makes the spatial access methods (SAMs)
such as R-tree and its variants [13, 20, 2] inapplicable. This
has prompted the application of metric indexing methods,
which do not need the original objects to be represented in
multi-dimensional space, but only require that the distance
measure between objects be metric (i.e., satisfy symmetry,
non-negativity, and triangle inequality properties). In met-
ric indexing, the relative distances of the sequences are used

to organize and partition the data into a hierarchical struc-
ture based on the distances to representative sequences of
the partitions at each level. The triangle inequality is then
used to prune the search space during the traversal of the
metric-tree while answering a similarity search query. A
survey of the metric indexing based methods can be found
in [22].

Due to the requirements on the distance measure, the
metric indexing methods have only considered the basic
edit distance measure, where an identity matrix is used as
the residue substitution matrix [5]. The identity matrix may
be appropriate for nucleotide sequences where the substi-
tutability of the nucleotides is almost uniform. However, the
identity matrix does not give biologically accurate results
for protein sequences, where the similarities and differences
among individual residues become biologically more sig-
nificant. [17] considers modelling other substitution ma-
trices as near-metric based on the maximum and minimum
substitution values whereas [26] have uses mPAM [27], a
biologically more sensitive metric substitution matrix.

[26] uses a multiple vantage point (MVP) tree to index
subsequences. MVP tree, like other vantage point trees, is
built by means of a top-down recursive process and does not
gracefully support insertions and deletions. M-tree of [7]
maintains a height-balanced tree to overcome this problem.
Despite having good performance in general metric index-
ing applications, M-trees still suffer having a large number
of sequence comparisons in biological sequence search (see
Venkateswaran et al. 25 for a comparison).

Reference-based indexing have also been applied to sim-
ilarity search in biological databases. In [25], a vari-
able number of reference sequences are assigned to each
database sequence, and the distances to the reference points
are used to avoid unnecessary distance calculations between
query and database sequences. Even though the number
of distance calculations is minimized in reference-based in-
dexing, the search is performed sequentially (i.e., every sin-
gle sequence in the database is tested), which does not scale
well for larger database sizes.

One further problem of the metric search methods, as
they have been employed so far, is that only the global sim-
ilarity between sequences is considered (with [26] being an
exception). In the biological domain, the global similar-
ity has limited applicability, and requires that the sequences
being compared be evolutionarily very close. The end-gaps,
which are normally not penalized in the biological domain,
are also not handled gracefully by these methods. We note
that the global similarity measure may find use in searching
very similar proteins in whole-genome comparisons; how-
ever, it is far from being applicable to the general homology
search problem, which ultimately relies on detection of lo-
cally conserved short subsequences.

In this study, we limit our focus to the k-mer search,

which is the main step in biologically relevant local search
of homologous sequences. We propose an approximate
similarity search which is based on landmark-guided em-
bedding of the k-mers. We map the k-mers of a sequence
database to a vector space based on their distances to a ref-
erence set of k-mers (denoted as landmarks). The k-mers in
the embedded space are then indexed using spatial access
methods for fast similarity search.

The contributions of this study include: (1) hybridizing
Fastmap [9] and LMDS [8] methods to achive more robust
and accurate sequence embedding, (2) providing an approx-
imate vector representation of sequences, (3) showing that
the embedded representation allows efficient and biologi-
cally relevant indexing and similarity search.

2 Methods

Throughout this presentation, we use q to denote an in-
put query sequence of length m whose symbols are from
an alphabet of size σ. The set of database sequences are
denoted as S = s1, s2, ..., sN where N is the number of se-
quences in the database. We generate all k-mers from both
database and query sequences using a sliding window over
sequences with a step size of one symbol.

The edit distance between two sequences is defined as
the minimum cost of edit operations (insert, delete, replace)
that transform one sequence to the other. The cost of re-
placing an individual symbol to another is looked up from
a substitution matrix M . The costs of insertions and dele-
tions are generally provided as an optimized gap penalty pa-
rameter. Without loss of generality, we used the weighted
Hamming distance instead of the general alignment dis-
tance between sequences in order to decrease the analy-
sis time. Because the gap penalty is usually larger than
mismatch scores, weighted Hamming distance is sufficient
when comparing short k-mers (see [26] for a proof correct-
ness).

Our goal is to represent the set of k-mers in a low-
dimensional space while preserving the distances among
them as much as possible. Note that the k-mers can-
not be directly represented as points in multi-dimensional
vector space, therefore the classical dimension reduction
techniques that rely on presence of the original high-
dimensional vector space are not applicable here. More-
over, in the context of similarity search, the mapping has
to be easily extensible to new query objects without requir-
ing re-embedding of the whole database. These require-
ments lead us to the landmark based methods that gener-
ate a metric-preserving embedding using distances to only
a small selection of sequences.

The FastMap method by [9] uses an iterative embedding
procedure where at each iteration, the data is embedded
onto an axis formed by two data points and the projection of

Symbol Definition
σ length of the alphabet
k length of each k-mer subsequence
q query sequence for which a similarity search is being performed
M the substitution matrix that gives the costs of replacing symbols
d the dimensionality of the space in which the k-mers are embedded
N number of k-mers to be embedded
n number of landmark points (sequences)

DA,B the distances of sequences in set A to those in set B
∆ squared distances
D′ Euclidean distance in the embedded space

Table 1. Symbols used in this presentation and their definitions.

the data onto this axis is used as input for the next iteration.
The landmark points at each step are chosen heuristically
to be as distant as possible in order to account for the high-
est variance in the data distribution. FastMap relies on the
assumption that the original space is a Euclidean space and
makes use of the ‘cosine law’ for projection and embedding.
This assumption causes the embedding to be unstable if the
original space is not Euclidean.

Recently, [8] have proposed a scalable landmark-guided
metric preserving embedding algorithm, LMDS, that shows
better stability properties than FastMap. LMDS first des-
ignates a set of n objects as landmark points and applies
classical MDS on n × n matrix Dn,n of distances between
pairs of landmarks to obtain an embedding in d-dimensional
space. The classical MDS [23] computes the d largest posi-
tive eigenvalues λ, of the mean-centered inner-product ma-
trix with the corresponding orthonormal set of eigenvectors
ν. The d-dimensional embedding vectors for the landmark
points are given by the following matrix:

Lk =

√
λ1ν

T
1√

λ2ν
T
2

...√
λdν

T
d

For the rest of the data points, distance-based triangula-
tion is applied to each point x using ∆x,n vector of squared
distances to the n landmark points. The embedding vector
−→x is obtained using the pseudoinverse transpose L�

k of the
landmark embeddings by the formula:

−→x = −1
2
L�

k(∆x,n − ∆µ
x,n)

where ∆µ
x,n is the mean value of squared distances to the

landmark points.
The quality of the embedding depends partially on the

selection of initial landmark points. We use three different
methods for designating the landmark points. LMDSrand

randomly selects the landmarks from the original data

points. LMDSminmax obtains a set of landmarks that are
distant from each other by starting from a random land-
mark and heuristically adding new landmarks such as to
minimize the maximum distance to the already selected
landmarks (This heuristic is similar to the one proposed
by [11]). In order to combine the landmark selection per-
formance of Fatmap and stability of LMDS, we also pro-
pose LMDSfastmap method, which uses the same land-
mark points as found by the Fastmap method on the same
dataset.

Once all the database k-mers are embedded into the vec-
tor space, the indexing and retrieval tasks can be delegated
to spatial access methods. In the experiments section, we
present the search speed results of using X-tree [4], however
any of the spatial access methods can be used for this pur-
pose. A query k-mer would be embedded into the same vec-
tor domain using its distances to the landmarks used in gen-
erating the embedding. Using the spatial method of choice,
the mapped query can then be searched against the vector
representations of the database k-mers.

3 Experiments

The performance of the embeddings is evaluated on syn-
thetic and real datasets. In synthetic datasets, for a given
alphabet size σ and subsequence length k, all k-mers were
generated. The size of the synthetic datasets were limited to
10,000 sequences, and a random sampling from all possible
sequences were performed if the number of k-mers N = kσ

exceeded 10,000. An identity substitution matrix is used to
calculate the distances between k-mers.

The real data was obtained from the yeast proteins
dataset which is used to benchmark BLAST (ftp.nsbi.
nlm.nih.gov/pub/impala/blasttest). The
yeast dataset contains 6,341 protein sequences with a total
of about 2.9 million residues. The dataset also contains
a separate query set of 103 proteins ranging from 38
to 884 residues in length, whose true positive hits are

determined by human experts. Note that the alphabet of the
protein sequences has cardinality of 20 and is composed of
amino-acid residue symbols.

To accurately model biologically relevant distances
among sequences, we used CB-EUC substitution matrix by
[16], which is a metric matrix with good sequence align-
ment performance. Note that according to [19], if a substi-
tution matrix is metric, then the alignment distances of the
sequences using this matrix also forms a metric.

For each embedding method and variations, we evalu-
ated the quality of the embedded sequences using Sam-
mon’s metric stress measure E [18] which quantifies the
error in the preservation of the original distances, with a
value 0 indicating a lossless embedding:

E =
1∑n

i<j Dij

n∑
i<j

(Dij − D′
ij)

2

Dij

where Dij is the original distance between kmers i and
j, and D′

ij is the distance in the embedded space.

3.1 The dimensionality of the embedded
space

There is an accuracy-performance trade-off on the num-
ber of dimensions to be used in the embedded space. As the
number of embedding dimensions d is increased, the origi-
nal data can be represented better, at a higher cost incurred
on the similarity search in the embedded space. Since a
lossless embedding is not possible, one needs to empirically
determine the dimensionality for a desired level of mapping
accuracy.

Figure 1 shows the metric-stress (left) and the correla-
tion coefficient (right) of the mapped distances with respect
to the original distances. The original data is a synthetic
set of sequences of length 5, where CB-EUC substitution
matrix (alphabet size σ = 20) is used to calculate the orig-
inal distances. (Qualitatively similar results were obtained
for other k and σ values.) In order to obtain a fair com-
parison, the same number of landmark points required in
Fastmap (n = 2 × d) is used in the LMDS methods. The
LMDSmaxmin and LMDSfastmap methods show simi-
lar mapping accuracies, whereas LMDSrandom requires
more dimensions to achieve the same level of accuracy. The
Fastmap method performs similar to LMDS methods up to
a certain number of dimensions, after which the numeri-
cal instability in the mapping accumulates and degrades the
mapping accuracy.

Due to its numerical instability, Fastmap does not nec-
essarily give a better embedding as the number of dimen-
sions is increased. Despite this instability, we have observed
an important merit of the Fastmap method. Namely, the
number of dimensions beyond which Fastmap’s accuracy

degrades corresponds to the intrinsic Euclidean dimension-
ality of the original dataset. Notice that in Figure 1, the
metric stress achieved by Fastmap at d = 7 is comparable
to the metric stress achievable by the LMDS methods with
higher dimensions. This observation has led us to deter-
mine the dimensionality of the target embedding space as
this breaking point in Fastmap’s mapping accuracy. This
gives us a more well-defined definition than assessing the
convergence of LMDS.

Defining the breaking point dimensionality of a given
dataset has allowed us to analyze its dependence on the
other parameters. As shown in Figure 2 (left), the breaking
point dimensionality of the dataset increases linearly with
both the sequence length k and the alphabet size σ. An iden-
tity substitution matrix is used in the distance calculation in
order to compare the alphabet size σ across datasets. Note
that even though the alphabet size is 20 for proteins, amino-
acid substitution matrices impose a clustering on the amino-
acid types, which in effect reduces the intrinsic dimension-
ality of the dataset. The dimensionality of the dataset when
the CB-EUC substitution matrix is used ranges between that
of the datasets with σ = 4 and σ = 5. In fact, the principal
component analysis of the CB-EUC matrix shows that the
first 5 principal components account for the 98.2% of the
variation in the matrix values.

3.2 Number of landmarks

In Fastmap, 2 landmarks are chosen for each dimension
to provide an axis of projection for the data, which yields
the total number of landmarks to be n = 2 ∗ d. Whereas in
the LMDS methods, the number of landmarks can be cho-
sen arbitrarily, provided that n ≥ d + 1. The effect of the
number of landmarks on the mapping accuracy is shown in
Figure 2 (right). The best landmark selection strategy is that
of Fastmap, in terms of monotonically decreasing the met-
ric stress. For LMDSmaxmin, each new landmark is not
guaranteed to improve the mapping accuracy, because the
landmark selection heuristic is only an approximation to the
optimal selection. However, the LMDS methods do con-
verge to an optimal mapping accuracy, if sufficiently large
number of landmark points are used.

The number of landmarks affects the computational
complexity of mapping the database to the embedded space,
and also of mapping new query sequences for similarity
search in the embedded space. Even though LMDS meth-
ods can provide further improvement in the mapping ac-
curacy, the number of landmarks would be limited by the
amount of time one is willing to spend in mapping new se-
quences.

Figure 1. Mapping accuracy of the embedding vs. target dimensionality (k=5).

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

number of dimensions

m
et

ric
 s

tr
es

s
(lo

g−
sc

al
e)

Fastmap
LMDS

maxmin

LMDS
random

LMDS
fastmap

0 2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

number of dimensions

co
rr

el
at

io
n

w
/ o

rig
in

al
 d

is
ta

nc
es

Fastmap
LMDS

maxmin

LMDS
random

LMDS
fastmap

Figure 2. Left: Dependency of dimensionality on sequence length and alphabet size. Right: The
effect of the number of landmarks on mapping accuracy (k=5, d=7).

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

sequence length k

br
ea

ki
ng

 p
oi

nt
 d

im
en

si
on

al
ity

σ=2
σ=4
σ=5
σ=10
σ=20
σ=20, CB−EUC

5 10 15 20 25 30
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

number of landmarks

m
et

ric
 s

tr
es

s

Fastmap
LMDS

maxmin

LMDS
random

LMDS
fastmap

3.3 Similarity search performance

While metric-stress is a good indication of how well the
distances among the original sequences are preserved in
the embedded space, the similarity search accuracy within
the embedded space still remains to be evaluated. In or-
der to test the similarity search performance, we performed
range queries on the yeast dataset using the separate set of
query proteins and various distance thresholds. For a given
query kmer q and distance threshold r, a range query in the
original sequence space would return all the kmers in the
database that are within r edit distance of the query kmer.
Similarly, in the embedded vector space, all mapped objects
that are within r Euclidean distance away from the image of
the query q′ are returned.

Figure 3 shows the sensitivity (true positive rate) and
specificity (1 - false positive rate) of the range queries for
different mapping methods under various search radii r.
The results are the averages of the queries performed for
all kmers in the test query set. The approximation by

Fastmap tends to overestimate the original edit distances,
which yields less number of hits in the answer set, and
thus higher specifity but lower sensitivity compared to other
methods. LMDSfastmap combines the landmark selection
algorithm of Fastmap with the stability of LMDS to yield
the best sensitivity results while having comparable speci-
ficity with those of LMDSmaxmin and Fastmap.

3.4 Homology search performance

It must be noted that in the context of homology search,
a small distance threshold is sufficient to obtain biologically
relevant range queries, because the homologous proteins are
expected to share very similar subsequences. Moreover,
the homology search procedure is particularly permissive
to small errors in the approximation of kmer distances, be-
cause kmers from the homologous proteins missed by some
of the query subsequences are compensated by other subse-
quences that correctly return the kmers of the homologous
proteins.

Figure 3. Sensitivity (left) and specificity (right) of kmer range search results. (k=6, d=8)

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

search radius

se
ns

iti
vi

ty

Fastmap
LMDS

maxmin

LMDS
random

LMDS
fastmap

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

search radius

sp
ec

ifi
ci

ty

Fastmap
LMDS

maxmin

LMDS
random

LMDS
fastmap

For each of the 103 yeast query proteins, we generated
all kmers and searched the yeast dataset for kmer hits. For
each distance threshold, a search result is considered to be
a true hit if at least one kmer of the query protein returns
a kmer of the homologous proteins. Figure 4 shows the
homology search results using varying distance thresholds.
For comparison, the results of an exact kmer search in the
sequence space are also included. Notice that the results
of the homology search are in accordance with the results
of the kmer search in Figure 3. Namely, the methods that
provide more sensitive kmer answer sets also provide more
sensitive homology search results.

Even though for a given distance threshold, more kmers
are returned per kmer search in the embedding methods
compared to an exact kmer search (Figure 4, right), the em-
bedding methods require a smaller search radius to achieve
the same level of sensitivity (Figure 4, left). For instance, to
achieve 90% sensitivity (i.e., to obtain 90% of the homolo-
gous proteins), the LMDSmaxmin method returns 3.5%000

of the kmers per kmer search, whereas an exact kmer search
in the sequence space returns 4.1%000 of the kmers. This
is due to the fact that in the embedding methods, the ap-
proximation errors at lower distance thresholds cause the
distances to some of the kmers of homologous proteins to
be underestimated. These kmers are then returned in the
answer set, whereas they would not be present in a range
query in the original sequence space.

Note that smaller kmer lengths k while require a smaller
search radius and provide more sensitive homology search,
they incur higher false positive rates; whereas higher k val-
ues provide more specific results at the cost of sensitivity.
k = 6 was found to be a good trade-off between sensitivity-
specificity of homology search results on the yeast dataset.
The relative performance of the methods were similar for
other kmer lengths.

3.5 Search time performance

Short subsequences are embedded under the premise that
indexing and similarity search in a vector domain is more
efficient than those in the sequence domain. In order to il-
lustrate this, we performed indexing in both domains and
compared the CPU times for range queries. We employed
Slim-tree [24] metric access method (MAM) for indexing
the sequences, and X-tree [4] spatial access method (SAM)
for indexing the vector representations resulting from the
LMDSfastmap method.

Figure 5 shows the average query times for varying
database sizes and search radii. Similarity search in the vec-
tor domain achieves approximately 500-fold speed-up over
that in the original sequence domain. A search radius of 7 is
used while varying the database sizes (left) and a database
size of 100,000 is used while varying the search radii (right).
A similar trend in search times were observed for other k,
database size, and search radius values. While an exhaus-
tive analysis and comparison of MAM and SAM methods
are beyond the scope of this study, we note that the search
speeds achieved by Slim-tree and X-tree are representative
of those achievable by the currently available MAM and
SAM methods.

4 Discussion

In this study, we have proposed an approximation to sim-
ilarity search in sequence databases by embedding the se-
quences in a vector space based on their distances to se-
lected landmark sequences. We have demonstrated that
similarity search in the embedded space can be performed
several orders of magnitude faster than that in the original
sequence space, without significant loss in the accuracy of
the search results. Fastmap and LMDS methods with vari-
ous landmark selection heuristics are investigated for their
embedding and similarity search accuracy.

Figure 4. Homology search performance on the yeast dataset (k=6, d=8)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

search radius

se
ns

iti
vi

ty

Fastmap
LMDS

maxmin

LMDS
random

LMDS
fastmap

Exact−match

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

search radius

%
 k

m
er

s

Fastmap
LMDS

maxmin

LMDS
random

LMDS
fastmap

Exact−match

Figure 5. Average query time comparison (k=6, d=8)

 1000 10000 100000 500000
10

−6

10
−4

10
−2

10
0

database size

av
er

ag
e

qu
er

y
tim

e
(s

ec
)

Slim−tree
X−tree

 0 1 2 3 4 5 6 7 8 9 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

search radius

av
er

ag
e

qu
er

y
tim

e
(s

ec
)

Slim−tree
X−tree

While the Fastmap provides a good heuristic for land-
mark selection, its numerical instability causes degradation
in the mapping accuracy. Moreover, Fastmap tends to over-
estimate the original distances compared to LMDS meth-
ods, causing a lower sensitivity in similarity search results.
We have proposed LMDSfastmap method which uses the
landmarks generated by the Fastmap, yet provides stabil-
ity in the mapping, yielding better performance in map-
ping and similarity search. The mapping accuracy achieved
by the embedding methods can be further improved using
higher dimensionality in the embedding space, or using a
larger number of landmark sequences. We have presented a
systematic comparison of the performance on synthetic and
real sequence datasets.

In this study, we have mainly focused on kmer search,
which constitutes a significant initial step to the general ho-
mology search problem. These short subsequences can then
be extended and stitched to obtain the final sequence align-
ments. We note that the efficiency of the embedding and the
indexing will further depend on the subsequence extension
algorithm used. We refer the reader to [12] for details of
these algorithms.

We expect the vector representation of sequences to have
applications beyond similarity search. For instance, a vec-
tor domain simplifies the representation of a group of se-
quences by their mean vector, which otherwise is not readily
available in the sequence domain. We are currently investi-
gating the use of such abstract representations in sequence
clustering and multiple sequence alignment applications.

The landmark embedding methods presented here can
also be applied to content-based retrieval in other domains
such as image and multimedia databases. In such applica-
tions, the original space is a high-dimensional space formed
by various features extracted from the database objects. The
landmark-guided embedding would provide a dimensional-
ity reduction and allow efficient similarity search. Further-
more, the similarity search in these applications are espe-
cially tolerant of the approximation errors incurred by the
embedding, because the original features and the classifica-
tion of objects are in general subjectively determined.

5 Acknowledgements

This research was supported by Turkish Scientific and
Research Council (TUBITAK) Grant 107E173. We would
also like thank the anonymous reviewers for their critical
analysis of and corrections to the manuscript.

References

[1] Altschul, S., Gish, W., Miller, W., Myers, E., and Lip-
man, D. (1990). Basic local alignment search tool. Jour-
nal of Molecular Biology, 215(3):403–410.

[2] Beckmann, N., Kriegel, H.-P., Schneider, R., and
Seeger, B. (1990). The R∗-tree: an efficient and robust
accessmethod for points and rectangles. ACM SIGMOD,
pages 322–331.

[3] Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Os-
tell, J., and Wheeler, D. L. (2004). Genbank: update.
Nucleic Acids Res., 32, Jan 1:D23–6.

[4] Berchtold, S., Keim, D. A., and Kriegel, H.-P. (1996).
The X-tree: An index structure for high-dimensional
data. In VLDB, pages 28–39.

[5] Bozkaya, T. and Ozsoyoglu, M. (1999). Indexing large
metric spaces for similarity search queries. ACM Trans-
actions on Database System, 24(3):361–404.

[6] Cao, X., Li, S. C., Ooi, B. C., and Tung, A. K. H. (June
2004). Piers: An efficient model for similarity search in
dna sequence databases. SIGMOD Record, 33(2).

[7] Ciaccia, P., Patella, M., and Zezula, P. (1997). M-tree:
An efficient access method for similarity search in met-
ric spaces. Proc. Intl. Conf. on Very Large Databases
(VLDB), pages 426–435.

[8] de Silva, V. and Tenenbaum, J. B. (2003). Global ver-
sus local methods in nonlinear dimensionality reduction.
Proc. NIPS, 15:721–728.

[9] Faloutsos, C. and Lin, K.-I. (1995). FastMap: A fast
algorithm for indexing, data-mining and visualization of
traditional and multimedia datasets. In Proceedings of
the 1995 ACM SIGMOD International Conference on
Management of Data, pages 163–174.

[10] Goble, R. S. C., Baker, P., and Brass, A. (2001). A
classification of tasks in bioinformatics. Bioinformatics,
17:180188.

[11] Gonzalez, T. (1985). Clustering to minimize the max-
imum intercluster distance. Theoretical Computer Sci-
ence, 38:293–306.

[12] Gusfield, D. (1997). Algorithms on Strings, Trees and
Sequences: Computer Science and Computational Biol-
ogy. Press Syndicate of the University of Cambridge,
USA.

[13] Guttman, A. (1984). R-trees: A dynamic index struc-
ture for spatial searching. ACM SIGMOD, pages 419–
429.

[14] Liolios, K., Mavrommatis, K., Tavernarakis, N., and
Kyrpides, N. (2008). The Genomes On Line Database
(GOLD) in 2007: status of genomic and metagenomic
projects and their associated metadata. NAR Database
issue. in press.

[15] Ma, B., Tromp, J., and Li, M. (2002). Patternhunter:
faster and more sensitive homology search. Bioinformat-
ics, 18:440–445.

[16] Sacan, A. and Toroslu, I. H. (2007). Amino acid sub-
stitution matrices based on 4-body delaunay contact pro-
files. IEEE 7th Intl Symp on Bioinformatics and Bioengi-
neering (IEEE-BIBE2007), pages 796–802.

[17] Sahinalp, S., Tasan, M., Macker, J., and Ozsoyoglu,
Z. (2003). Distance based indexing for string proximity
search. IEEE Data Engineering Conference, pages 125–
137.

[18] Sammon, J. (1969). A nonlinear mapping for data
structure analysis. IEEE Transactions on Computers, C-
18:401–409.

[19] Sellers, P. (1974). On the theory and computation of
evolutionary distances. J. Appl. Math. (SIAM), 26:787–
793.

[20] Sellis, T., Roussopoulos, N., and Faloutsos, C. (1987).
The R+-tree: A dynamic index for multimensional ob-
jects. 13th VLDB, pages 507–518.

[21] Smith, T. and Waterman, M. (1981). Identification of
common molecular subsequences. Journal of Molecular
Biology, 147:195–197.

[22] Taskin, M. and Ozsoyoglu, Z. M. (2004). Improve-
ments in distance-based indexing. Proceedings of the
16th International Conference on Scientific and Statisti-
cal Database Management, SSDBM04, pages 161–170.

[23] Torgerson, W. S. (1958). Theory and Methods of Scal-
ing. New York: Wiley.

[24] Traina, J. C., Traina, A. J. M., Seeger, B., and Falout-
sos, C. (2000). Slim-trees: High performance metric
trees minimizing overlap between nodes. In EDBT 00:
Proceedings of the 7th International Conference on Ex-
tending Database Technology, pages 51–65.

[25] Venkateswaran, J., Lachwani, D., Kahveci, T., and Jer-
maine, C. (2006). Reference-based indexing of sequence
databases. VLDB 2006.

[26] Xu, W., Mao, R., Wang, S., and Miranker, D. P.
(2006). On integrating peptide sequence analysis and re-
lational distance-based indexing. In BIBE ’06: Proceed-
ings of the Sixth IEEE Symposium on BionInformatics
and BioEngineering (BIBE’06), pages 27–34.

[27] Xu, W. and Miranker, D. P. (2004). A metric model
of amino acid substitution. Bioinformatics, pages 1214–
1221.

